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1. Introduction

This paper deals with (twisted) Hopf algebra forms of group rings, i.e.
with Hopf algebrasH over a base ringK, such that for a suitable extension
L of K the Hopf algebra L 
K H is isomorphic to a group ring LG over
L. These Hopf algebras arise from an adjoint situation as a solution of a
universal problem in universal algebra.

One of the well known examples of a pair of adjoint functors is the
units functor U :K-Alg �! Gr associating the group of units or invert-
ible elements U(A) with each K-algebra A, and its left adjoint functor
K-:Gr �! K-Alg associating with each group G its group ring KG. The
group ring KG actually turns out to be a cocommutative Hopf algebra.
We are going to generalize this situation.

Let F be a �nite group. We consider the category F -Gr of groups on
which F acts by automorphisms and group homomorphisms compatible
with the action of F . Furthermore let L be a Galois extension of the
commutative base ring K with Galois group F . Then there is a functor

�:K-Alg �! F -Gr

de�ned by �(A) := U(L 
K A). The action of F on �(A) is given by
the Galois action of F on L. In this paper the Galois extension L of K
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is assumed to be a commutative ring and free as a K- module. Our �rst
result will be that � possesses a left adjoint functor

K�:F -Gr �! K-Alg:

The K-algebras K�(G) or simply K�G will be called twisted group
rings. They should not be confused with crossed product group rings,
skew group rings, smash products, or similar constructions. These twisted
group rings do in general not even allow a canonical map fromG intoK�G.
As we will see, there will, however, be a canonical map G �! (K�G)n

where n is the order of F .

The twisted group rings will turn out to be cocommutative Hopf
algebras. They even have the property to coincide after base ring extension
to L with the ordinary group ring L 
 K�G �= L 
 KG. This is an
isomorphism of Hopf algebras. Thus K�G is a (twisted) L-form of the
group ring KG.

In [2] we studied the construction and general theory of (twisted)
forms of group rings KG for a �xed group G. We showed that the forms
are in one to one correspondence with the F -Galois extensions of K where
F = Aut(G). Using the speci�c knowledge of all quadratic extensions of
K (under minor restrictions), we were able to describe all Hopf algebra
forms of KZ, KC3, KC4, and KC6 by generators and relations. A form
H of KG which corresponds to the F -Galois extension L under [2 Thm.5]
is certainly split by L, i.e. L 
K H �= L 
K KG as Hopf algebras, but
it may also be split by a di�erent, even smaller Galois extension L0 of K.
So we will not make use of the correspondence between the forms and
Galois extensions. We will �x a Galois extension L of K and then study
the Hopf algebra forms H of KG for all groups G which are split by the
Galois extension L.

The group elements g in KG are connected with certain elements
in K�G by formulas which generalize the Euler formulas and functional
equations for the trigonometric functions

exp = cos + i � sin; cos =
1

2
(exp + exp�1); sin =

1

2i
(exp � exp�1);

exp(x + y) = exp(x) + exp(y);

cos(x + y) = cos(x)cos(y) � sin(x)sin(y)

sin(x + y) = cos(x)sin(y) + sin(x)cos(y):



In fact these elements will be used in the construction of twisted group
rings as canonical generators. These generators and the additional rela-
tions will be derived from certain generators and relations of the F -group
G. A speci�c example is the group ringKZ = Khgi and the twisted group
ring K�Z = K[c; s]=(c2 + s2 � 1). If 2 is invertible in K then these two
Hopf algebras are isomorphic i� K contains a square root i of �1. Then
the isomorphism is given by

g = c+ is; c =
1

2
(g + g�1); s =

1

2i
(g � g�1):

The diagonal on g, c, and s satis�es the 'functional equations'

�(g) = g 
 g; �(c) = c
 c� s
 s; �(s) = c
 s+ s 
 c:

These generators and relations descibing K�G will even be generators
and relations of the group ring KG in case K contains a subring K 0 over
which it is F -Galois. Thus we obtain very interesting new generators and
relations even for the classical case of group rings.

We will show that all L-forms of group rings for a connected Galois
extension L are twisted group rings as described above. So, many new
Hopf algebras can be constructed in this way. A number of questions in
the representation theory of groups are answered by base �eld extension,
i.e. the splitting of group rings. One can now try to �nd twisted group
rings de�ned already over the base �eld, which also have the required
properties. Furthermore the structure of twisted group rings seems to be
quite unknown yet, e.g. their centers, radicals, representation type, etc.
Many of our calculations could be simpli�ed thanks to helpful comments
in [0].

2. The Multiplication Coefficients of a Free Galois Extension.

Throughout this paper we shall work with a free Galois extension of
commutative rings L : K with �nite Galois group F in the sense of [1],
i.e. an extension of commutative rings such that L is a �nitely generated
free K-module, K is the �xed ring under the operation of a �nite group
F of automorphisms of L and there is an isomorphism h : L 
K L �!
L
K (KF )�, h(l0 
 l) =

P
�2F l0�(l) 
 ��, where f��g is a dual basis to

the basis f� 2 Fg of KF .

The choice of a free generating system fxig for L over K de�nes an
isomorphism of free K-modules L �= Kn; xi 7! ei = (0; : : : ; 1; : : : ; 0). This



isomorphism de�nes a K-algebra structure on Kn, whose multiplication
coe�cients are determined by

xixj =
nX

k=1

�k
ijxk:

We determine these coe�cients and those of the action of F and L solely in
terms of a matrix C := (�(xi)ji = 1; : : : ; n;� 2 F ). We avoid enumerating
the group elements and thus the columns of C, but the reader can use any
enumeration for F .

Lemma 1. Let L be a free F -Galois extension of K with basis fxiji =
1; : : : ; ng. Let C = (
i;�ji = 1; : : : ; n;� 2 F ) be the matrix with co-

e�cients 
i;� := �(xi) in L. Then C is invertible with inverse matrix

B = (��;i). The unit coe�cients, the multiplication coe�cients, and the

F -action coe�cients of L with respect to the basis fxig lie in K and are

given by

"i =
X
�2F

��;i for 1 =
nX

i=1

"ixi; (1)

�k
ij =

X
�2F


i;�
j;���;k for xixj =
nX

k=1

�k
ijxk; (2)

�ki;� =
X
�2F


i;����;k for �(xi) =
nX

k=1

�ki;�xk: (3)

Proof: For the "norm" (or "integral") e� 2 (KF )� de�ned by e�(�) :=
�e;�, where e is the unit element of the group F , there is a uniquely deter-
mined element

P
xi
yi 2 L
L such that h(

P
i xi
yi) =

P
�;i xi�(yi)


�� = 1 
 e�. So by de�nition this element satis�es h(
P

i xi 
 yi)(�) =P
i xi�(yi) = �e;�, hence for all s 2 L

s =
X
�

�(s)�e;� =
X
i;�

xi�(yis) =
X
i

xitr(yis): (4)

We �rst show that the matrix B = (��;i) := (�(yi)j� 2 F ; i =
1; : : : ; n) is the inverse matrix of C. We observe that

P
i �(xi)�(yi) =

�(
P

i xi�
�1�(yi)) = �(�e;��1�) = �e;��1� = ��;�. Furthermore if we sub-

stitute s = xj in (4) we get xj =
P

i xi
P

� �(yi)�(xj ). This impliesP
� �(yi)�(xj ) = �ij .



If we substitute s = 1 in (4), we get the coe�cients of the unit element
of L from 1 =

P
i tr(yi)xi as

"i = tr(yi) =
X
�2F

��;i:

If we substitute s = xixj in (4), we get the multiplication coe�cients
of L from xixj =

P
k xktr(ykxixj) =

P
k xk

P
� �(xi)�(xj )�(yk) as

�k
ij =

X
�2F


i;�
j;���;k:

Finally if we substitute s = �(xi) in (4), we get the coe�cients for
the F -action from �(xi) =

P
k xk

P
� �(yk)��(xi) as

�ki;� =
X
�2F


i;����;k: tu

So we have described the algebra structure of L solely in terms of
the matrix C (and its inverse B). The description of the F -action uses
the right regular action of F on itself. The action is thus given by the
induced permutations of the columns of C. Observe that the coe�cients
of C and B are in L, the coe�cients of the unit, the multiplication and
the F -action, however, are all elements in K (since they are obtained from
the trace).

We consider the isomorphism

Ln �= L
Kn �= L
 L
h
�! L
 (KF )� �= L
KF �= LF

where LF is the set of n-tuples of elements from L, indexed by the set F ,
or the set of maps from F to L. This isomorphism sends (liji = 1; : : : ; n) to
(
P

i li�(xi)j� 2 F ) = (
P

i li
i;�), i.e. it is multiplication by C on the right.
The inverse map is multiplication by B. For a; b 2 LF we get (a � b)B =
aB ? bB, where ? denotes the multiplication on Ln with multiplication
coe�cients (�k

ij ) and LF has componentwise multiplication. Similarly the

map is also compatible with the F -action, on LF componentwise and on
Ln with coe�cients �ki;�.

The coe�cients as calculated in Lemma 1 can also be used to describe
a K-algebra structure on Sn for any (non-commutative) K-algebra S and



an action of F on Sn just by applying the isomorphism L
K S �= Kn
K

S �= Sn. If S is an algebra of the form S �= L 
 T , then we can even use
the isomorphism of F -algebras

(L 
 T )n �= (L 
 T )F

where (L
T )F has componentwise operations and (L
T )n has operations
with coe�cients from Lemma 1. The isomorphism is still given by the
matrices B and C.

3. The Construction of a Twisted Group Ring

We want to construct the K-algebra K�G for an F -group G by us-
ing de�ning generators and relations of G. We �rst have to look at free
algebras.

Let X be a set and Gf be the free monoid on X. Then the monoid
ring LGf and the free (non-commutative) L-algebra LhXi coincide. This
is due to the fact that the underlying functor from the category Alg of
non-commutativeL-algebras to the category Set of sets factors through the
category Mon of monoids. The free constructions are the corresponding
left adjoint functors.

A similar argument can be used in a slightly more complicated setting.
Let F be a �nite group. Any of the categories Set, Mon, Alg named above
can be used to construct a new category F -Set, F -Mon, F -Alg of objects
on which F acts as automorphisms (actually pairs consisting of an object
plus an action) and morphisms which are compatible with the F -action.
It is easy to see that the left adjoint functors of the underlying functors
Alg �! Set, Alg �! Mon, and Mon �! Set can be used as left adjoint
functors for the underlying functors F -Alg �! F -Set, F -Alg �! F -Mon,
and F -Mon �! F -Set, i.e. the diagrams

F -Cat1
free
�! F -Cat2

U # U #

Cat1
free
�! Cat2

commute, since F acts by automorphisms. In particular we get that the
monoid algebra LGf of the free F -monoid Gf with generating set Y is
the free F -algebra on the set Y and also the free algebra on the free F -set
de�ned over Y . Now the free F -set on Y is just Y � F , so the algebra
LhY � F i is the monoid algebra LGf over the free F -monoid generated
by Y .



For a set Y = fgj jj 2 Ig consider Y � F with elements �(gj ) :=
(gj ; �) and a set of "variables" fSij ji = 1; : : : ; n; j 2 Ig . Then the map
� : LGf �! LhSiji de�ned by

�(�(gj)) :=
nX

i=1


i;�Sij

is an L-algebra isomorphism with inverse map

	(Sij) :=
X
�2F

��;i�(gj):

This follows immediately from the fact that B and C are inverse matrices
of each other and that L-algebra homomorphisms are uniquely determined
by the action on the free generating set. The algebra isomorphism �,
however, is not an F -isomorphism, since no F -structure has been de�ned
on LhSiji, but it could be used to de�ne such a structure.

We want to use the isomorphism � to give a di�erent representation
of a group ring LG of an F -group G by generators and relations. For that
purpose we �rst construct the monoid algebra LGf of a free F -monoid
Gf which has G as a quotient group. This algebra is isomorphic to LhSiji
by the isomorphism �. Then we import the relations of G written as
pairs of elements of Gf . Their di�erences generate the ideal J of LGf

to be factored out to obtain (a representation of) LG. This ideal will be
transferred to the ideal M of LhSiji via the given isomorphism �. The
central point of the calculation will be that the generators ofM are already
de�ned over K (instead of L), i.e. they are elements of KhSiji which
generate an ideal M 0 � KhSiji. Thus we obtain a K-algebra K�G :=
KhSiji=M 0 with the property L
K K�G �= LG.

More precisely let G be an F -group generated as an F -monoid by
the set Y = fgiji 2 I1g. Then there is a surjective F -homomorphism
�:Gf �! G, where Gf is the free F -monoid on Y . A relation for G is
a pair of elements (r1; r2) 2 Gf � Gf with �(r1) = �(r2). The set of all
relations for G is an F -submonoid of Gf �Gf . Let frj = (rj1; rj2)jj 2 I2g
be a generating set of the F -submonoid of relations. Then G can be
considered as a quotient of Gf modulo the congruence relation generated
by frjg.

We consider two elements r and s of Gf (written with non-negative
powers and F -multiples of the generators in Y ). Let J be the ideal gen-
erated by f�(r) � �(s)j� 2 Fg in LGf . Then M := �(J) is generated by



f�(�(r) � �(s))j� 2 Fg. We want to change this generating set to a set
of K-linear combinations of the Sij. For this purpose we form

f
X
�2F

��;i�(�(r) � �(s))ji = 1; : : : ; ng:

Lemma 2. The ideal M in LhSiji generated by f�(�(r) � �(s))j� 2 Fg
is also generated by the set f

P
�2F ��;i�(�(r) � �(s))ji = 1; : : : ; ng �

KhSiji.

Proof: Since the matrix (��;i) is invertible, this set generates the same
ideal M in LhSiji. We show that the coe�cients of the products of the
Sij 's are all in K. Let r = �1(g1) � : : : � �p(gp). Then we obtainX

�2F

��;i�(�(�1(g1) � : : : � �p(gp))

=
X
�2F

��;i�(��1(g1)) � : : : � �(��p(gp))

=
X
�2F

X
i1;:::;ip

��;i
i1;��1Si1;1 � : : : � 
ip;��pSip;p

=
X

i1;:::;ip

(
X
�2F

��;i
i1;��1 � : : : � 
ip;��p )Si1;1 � : : : � Sip;p:

Since the coe�cientsX
�2F

��;i
i1;��1 � : : : � 
ip;��p =
X
�2F

�(yi)��1(xi1 ) : : : ��p(xip )

are the trace of certain elements they are in K. tu

Theorem 3. Let G be an F -group with F -monoid generators fgiji 2 I1g
and F -monoid relations friji 2 I2g generating all F -monoid relations of G.

Let M 0 be the ideal of the K-algebraKhSij ji = 1; : : : ; n; j 2 I1i generated
by the set

f
X
�2F

��;i�(�(rj1) � �(rj2))ji = 1; : : : ; n; j 2 I2g

where �(�(gj )) :=
P

i 
i;�Sij . ThenK�G := KhSiji=M 0 is a Hopf algebra

and an L-form of the Hopf algebra KG, i.e. �:L
K KG �= L
K K�G.

Proof: By hypothesis the F -group G is represented as a quotient of a
free F -monoid by certain relations. If r = (r1; r2) is a relation in G then



r1 = r2 in G hence �(r1) = �(r2) for all � 2 F . It is easy to see that
the group algebra KG is the quotient KGf=J

0 where Gf is the free F -
monoid generated by fgiji 2 I1g and J 0 is the ideal of KGf generated
by f�(ri1) � �(ri2)ji 2 I2; � 2 Fg. If we identify L 
K KG and LG,
L
KKhSiji and LhSiji, more generally the tensor product with L with the
multiplication with L, then we get an algebra isomorphism �:L
KG �=
L
KhSiji=M 0, since L is faithfully 
at.

The diagonal on LhSiji=L�M 0 is induced by �:LG �! LhSiji=L�M 0.
We have

�(skl) = �(
X
�2F

��;k�(�(gl)))

=
X
�2F

��;k�(�(gl)) 
 �(�(gl)) =
X
i;j;�


i;�
j;���;ksil 
 sjl

=
X
i;j

�k
ijsil 
 sjl

where sij is the residue class of Sij . Since the coe�cients �k
ij are in K the

diagonal is already de�ned in Khsij i = KhSiji=M 0. In a similar way we
obtain "(sij ) =

P
� ��;i = "i (independent of j!) also de�ned on Khsiji.

Since Lhsij i is a bialgebra (isomorphic to LG) and L=K is faithfully 
at,
we get that Khsij i is also a bialgebra. It is a bialgebra form of KG. By
[2 Remark following Thm.1] a bialgebra form of a Hopf algebra is already
a Hopf algebra. tu

The Hopf algebraK�G := Khsiji is called a �-twisted group ring. We
have constructed the �-twisted group ring by generators sij and relations
using the formula

sij =
X
�2F

�(yi)�(gj)

in LG. Each relation r for G induces n relations in K�GX
�2F

��;i�(�(r1)� �(r2)) = 0:

These generators and relations are obtained from the de�ning F -genera-
tors and relations for G. Each generator gj (in fact each element) of G and
its F -orbit in G � KG corresponds to a family (sij ji = 1; : : : ; n) in K�G
by the given formula. The diagonal of K�G applied to an element of such
a family can be expressed solely by the elements of the same family (and



coe�cients in K) so we de�ne a �-group-like sequence of a Hopf algebra
H to be an n-tuple (si) in H such that

�(sk) =
X
i;j

�k
ijsi 
 sj and "(si) = "i

holds.

Corollary 4. Let G be an F -group. Let L be a commutative ring which

contains subrings K � L0 � L such that L0 : K is an F -Galois extension.

Then the group algebra LG has generators fsilji = 1; : : : ; n; l 2 Ig such

that for all l 2 I

�(skl) =
X

�k
ijsil 
 sjl and "(sil) = "i:

The relations for the fsijg are those of Theorem 3.

Proof: follows immediately from the isomorphism LG �= L 
L0 L
0 
K

KG �= L
L0 L
0 
K K�G. tu

4. Twisted Group Rings as Adjoint Functors

In this paragraph we shall identify LG and L
K�G via the isomor-
phism � as constructed above. Furthermore we view KG and K�G as
subalgebras in LG. In particular we have the equations

�(gj) =
nX

i=1


i;�sij ; sij =
X
�2F

��;i�(gj );

where fgiji 2 I1g is a generating set of G as an F -monoid.

Theorem 5. Let G be an F -group. Then there exists a cocommutative

Hopf algebra K�G and a homomorphism of F -groups �:G �! �(K�G)
such that for each K-algebra S and homomorphism of F -groups f :G �!
�(S) there exists precisely one K-algebra homomorphism ef :K�G �! S,
such that the diagram

G
�

�! �(K�G)

f & # �(ef)
�(S)

commutes.

Proof: We de�ne �:G �! �(K�G) = U(LG) by �(g) := g 2 LG. This
is obviously an F -homomorphism.



We choose a set of F -monoid generators fgiji 2 I1g of G and a gen-
erating set of relations friji 2 I2g . Construct K�G as in Theorem 3. For
the generating elements of G let f(gj ) =

P
i xi 
 tij 2 U(L 
 S). The

coe�cients tij 2 S are uniquely determined. Observe that

f(�(gj )) = �f(gj ) =
nX

i=1

�(xi) 
 tij :

De�ne ef (sij) := tij . In a �rst step this is only de�ned on KhSiji. In order

to show that this gives a well-de�ned algebra homomorphism ~f :K�G �!
S we have to check, that it preserves the relations in K�G. Let r = (r1; r2)
be a generating relation for G and

P
�2F ��;i(�(r1)� �(r2)) for some i 2

f1; : : : ; ng be one of the de�ning relations for the ideal M 0. We calculate

the action of ef only on the �rst part of this term

ef(X
�2F

��;i�(r1)) = ef (X
�2F

��;i�(�1(g1) : : : �p(gp))

= ef ( X
i1;:::;ip

X
�2F

��;i
i1;��1 : : : 
ip;��psi11 : : : sipp)

= ef ( X
i1;:::;ip

(
X
�2F

�(yi)�(�1(xi1 ) : : : �p(xip )))si11 : : : sipp)

=
X

i1;:::;ip

tr(yi�1(xi1 ) : : : �p(xip ))
ef (si11 : : : sipp)

=
X

i1;:::;ip

(
X
�2F

�(yi�1(xi1 ) : : : �p(xip )) 
 ti11 : : : tipp)

=
X
�2F

��;i(
X
i1

��1(xi1 )
 ti11) : : : (
X
ip

��p(xip ) 
 tipp)

=
X
�2F

��;i��1f(g1) : : : ��pf(gp)

=
X
�2F

��;if(��1(g1) : : : ��p(gp))

=
X
�2F

��;if(�(r1)):

Now f(r1) = f(r2) implies ef (P�2F ��;i(�(r1)��(r2))) = 0. Thus we get a

well-de�nedK-algebra homomorphism ef :K�G �! S. For gj 2 G we then

get �( ef )�(gj) = �( ef )(Pi 
i;esij ) =
P

i xi
 ( ef(sij )) =Pi xi
 tij = f(gj ).



To show the uniqueness of ef let bf be another extension of f so that
�( ef )� = �( bf )� = f . bf induces an L-algebra homomorphism from LG

to L 
 S which we also denote by bf . Then ef (sij ) = ef (P� ��;i�(gj ))

=
P

� ��;i
ef(�(gj )) =

P
� ��;i�(

ef )�(�(gj )) =
P

� ��;if(�(gj )) =bf (P� ��;i�(gj)) =
bf(sij ) so that ef = bf : tu

The universal property shown above implies immediately

Corollary 6. The functor K�:F -Gr �! K-Alg is left adjoint to

�:K-Alg �! F -Gr. tu

One could also have shown that � is an algebraic functor in the sense
of [4]. Then the adjointness property would have resulted from the gen-
eral theory, but the explicit construction as K� would not have followed.
Furthermore the Hopf algebra property of K�G would have required ad-
ditional investigations.

5. The Structure of Forms of Group Rings

Up to now we have constructed a speci�c version of (twisted) L-
forms of group rings (Theorem 3), namely the twisted group rings. We
have studied their structure in terms of generators and relations and their
property as a left adjoint functor. Now we want to prove that all forms
of group rings are twisted group rings under only minor restrictions. For
this purpose we consider those formsH of group rings which are split by a
free (F -)Galois extension L of K, i.e. L
KH �= L
KKG and we assume
that L is connected, i.e. has only the idempotents 0 and 1.

Theorem 7. Let L : K be a free Galois extension with �nite Galois group

F and let L be connected. Let G be a group and H be a K-Hopf algebra

which is an L-form of the group ring KG. Then there is an F -structure

on G such that H is isomorphic to a �-twisted group ring K�G.

Proof: Since L : K is faithfully 
at we can identify H and KG with
speci�c K-subalgebras of LG. In particular the H-module LG(�= L 
K

H) is freely generated over the basis fxig. Each element g 2 G has
a representation g =

Pn

i=1 xisi(g) with uniquely determined coe�cients
si(g) 2 H. This de�nes maps si : G �! H. These maps correspond to
the generators sij coming from the group generators gj in the preceding
paragraphs.

We de�ne an F -action on G by �(g) :=
P

i �(xi)si(g). First we
show that �(g) is an element of G. Since L is connected it su�ces



to prove that �(g) is a group-like element in LG. By Lemma 1 the
diagonal of the elements si(g) can be derived from

P
k xk�(sk(g)) =

�(g) = g 
 g =
P

ij xixjsi(g) 
 sj(g) =
P

k

P
ij �

k
ijxksi(g) 
 sj(g) as

�(sk(g)) =
P

ij �
k
ijsi(g) 
 sj(g). The augmentation is

P
k xk"(sk(g)) =

"(g) = 1 =
P

xk"k hence "(si(g) = "i. So (si(g)ji = 1; : : : ; n) is a �-
group-like sequence in H. Then

�(�(g)) =
X
k

�(xk)�(sk(g)) =
X
k

X
ij

�k
ij�(xk)si(g)
 sj (g)

=
X
ij

�(xixj)si(g) 
 sj(g) = �(g)
 �(g)

and "(�(g)) =
P

i �(xi)"(si(g)) = �(
P

i "ixi) = �(1) = 1 imply that �(g)
is group-like, hence �(g) 2 G.

Now it is easy to verify that this is an action of F on G by automor-
phisms. From Lemma 1 we get

� (�(g)) = � (
X
i

�(xi)si(g)) = � (
X
i

X
k

�ki;�xksi(g))

=
X
i;k;�


i;����;k
k;� si(g) =
X
i


i;��si(g) = (��)(g):

Furthermore we have

�(gh) = �(
X
i;j

xixjsi(g)sj (h)) = �(
X
k

xk
X
i;j

�k
ijsi(g)sj (h))

=
X
k

�(xk)
X
i;j

�k
ijsi(g)sj(h)) =

X
i;j

�(
X
k

�k
ijxk)si(g)sj(h))

=
X
i;j

�(xi)�(xj )si(g)sj (h) = �(g)�(h):

By de�nition we also have e(g) = g so that G is an F -group.

The choice of F -monoid generators fgjg for G de�nes K-algebra gen-
erators si(gj) for H with the formulas gj =

P
i xisi(gj) and si(gj) =P

� ��;i�(gj). The relations are transformed as in Theorem 3. tu

The connection with some known results should be mentioned here.
In [6 Thm.6.4.] the category of �nite etale group schemes over a �eld K
was found to be equivalent to the category of �nite G-groups, where G is the
pro�nite Galois group of the separable closure of K, acting continuously



on the �nite groups. These group schemes, represented by commutative
Hopf algebras, become constant group schemes already after a �nite Galois
�eld extension L, i.e. L
H� �= LG for a �nite group G. The action of G
on G is given by the action of F = Aut(L=K) on G via the isomorphism

K-Alg(H;L) �= L-Alg(L 
K H;L) �= L-Coalg(L;L 
K H�)
�= Group-Likes(L
H�) �= Group-Likes(LG) �= G:

Theorem 7 is a generalization of this theorem to in�nite groups and away
from the �eld requirements for L and K. On the other hand our the-
orem also generalizes part of the known antiequivalence between group
schemes of multiplicative type and abelian G-groups [6 Thm.7.3.] to non-
commutative Hopf algebras. In fact our Theorem 3 gives a description
of the representing algebras of group schemes of multiplicative type by
generators and relations of the corresponding character group.

6. Two Examples

We want to illustrate our results with two examples. Let C2 =
f�1; �2g = f�; �g be the cyclic group with two elements. Assume that
2 is invertible in K. Consider the C2-Galois extension L = K(i) of K
with i2 = �1 and basis x1 = 1; x2 = i. We form the matrix

(
i�) =

�
�1(x1) �2(x1)
�1(x2) �2(x2)

�
=

�
1 1
i �i

�
:

with the inverse matrix

(�ij ) =

�
1
2

1
2i

1
2

� 1
2i

�
Then the multiplication coe�cients are

�
�k
ij

�
=

 
2X

l=1


kl�li�lj

!
=

�
1 0
0 �1

���� 0 1
1 0

�

where the two adjacent matices are (�1ij) and (�2ij). The coe�cients of
the action of F on L are

�
�ki;�
�
=

 X
�2F


i;����;k

!
=

�
1 0
0 �1

�



and the coe�cients of the unit are ("1; "2) = (1; 0).

For a �-twisted group ring K�G we use the isomorphism (LG)n �=
(LG)F as described at the end of paragraph 2 given by multiplication by
B resp. C. We denote the multiplication in the algebra (LG)n by ?, the
action of F with no special notation. We still consider K�G and KG
embedded in LG. Each element g 2 G induces an element (�(g)j� 2 F ) 2
(LG)F and the fact that F acts by automorphisms induces (�(g))�(�(h)) =
(�(gh)). Each relation in G thus induces a relation in (LG)F , hence n
relations in LG.

We construct the twisted group ring K�Z. The group G := Z has
one (F -monoid) generator g and C2 acts on G by �(g) = g�1. So there
is a relation �(g)g = 1 (if we consider G as a multiplicative group). We
de�ne

(c; s) := (g; �(g))

�
1
2

1
2

1
2i � 1

2i

�
;

i.e. c = 1
2 (g + g�1) and s = 1

2i (g � g�1) in LG. These elements generate
a K-subalgebra K[c; s] � LG. There is a relation c2 + s2 = 1, in fact
the subalgebra is isomorphic to K�G = KhC;Si=(C2+ S2� 1; CS� SC)
where KhC;Si is the free algebra on C, S (the polynomial ring in non-
commuting variables C, S). The relations arise from a translation of the
relation �(g)g = 1 to

�(c; s) ? (c; s) = ("1; "2)

or using the de�nition of ? and the operation of F on (LG)n

(c;�s)(�k
ij )(c; s)

t = (1; 0)

hence c2 + s2 = 1 and �sc+ cs = 0.

It is obvious that this algebraK�G represents the circle group functor
which associates with each K-algebra S the "circle" f(c; s)jc; s 2 S; c2 +
s2 = 1g with multiplication (c; s) � (c0; s0) = (cc0 � ss0; cs0 + sc0) and unit
(1; 0) which we studied in [2].

The second example uses again the Galois extension L = K(i) over K
with Galois group C2, but this time we use the symmetric group G = S3.
The �-twisted group ring K�S3 is a speci�c form of KS3. In the theory of
[2] we were able to describe all forms of KS3 by all S3 = Aut(S3)-Galois
extensions of K, which are di�cult to describe. Here we need only a C2-
Galois extension of K, but we obtain only one speci�c form of KS3. The



Galois group C2 acts on S3 in the following way. We represent S3 by the
generators g1, g2 and the relations g21 = 1, g32 = 1, and g1g2 = g22g1. The
action of C2 then is given by �(g1) = g1 and �(g2) = g22. Consider the
equations

(c; s) := (g1; �(g1))

�
1
2

1
2

1
2i

� 1
2i

�
;

and

(d; t) := (g2; �(g2))

�
1
2

1
2

1
2i

� 1
2i

�
:

They de�ne elements c = 1
2 (g1+ g1) = g1, s =

1
2i (g1� g1) = 0, d = 1

2 (g2+
g22), and t =

1
2i
(g2�g22) in LG. The twisted group ringK�S3 is the subring

K[c; s; d; t] � LG which can be represented as K�S3 = KhC;S;D; T i=I,
where I is the ideal generated by the following expressions (simpli�ed by
s = 0):

C2 � 1; S;
D3 � T 2D � TDT �DT 2 � 1; T 3 �D2T �DTD � TD2;
D2C � T 2C � CD; DTC + TDC �CT;
D2 � T 2 �D; DT + TD + T:
These expressions follow from the translation of the group relations

(c; s) ? (c; s) = (1; 0);

((d; t) ? (d; t)) ? (d; t) = (1; 0);

(c; s) ? (d; t) = ((d; t) ? (d; t)) ? (c; s);

�(d; t) = (d; t) ? (d; t);

or from

(C2 � S2; SC + CS) = (1; 0);

(D3 � T 2D �DT 2 � TDT;D2T � T 3 +DTD + TD2) = (1; 0);

(CD � ST;CT + SD)

= (D2C � T 2C �DTS � TDS;D2S � T 2S +DTC + TDC);

(D;�T ) = (D2 � T 2;DT + TD):

The ?-multiplication is still de�ned by the matrix (�k
ij) and the action of

C2 is as in Lemma 1.

As C. Greither pointed out, the particularly nice multiplication and
operation matrices for the C2-extension K(i)=K as calculated at the be-
ginning of this paragraph are due to the fact that K(i)=K is a Kummer
extension and hold for general Kummer extensions. Consider a Kummer



extension K(�)=K with �n = b 2 K, n invertible in K and � a primitive
n-th root of unity in K. Choose 1; �; : : : ; �n�1 as a basis of K(�) over K.
Then by a simple computation the matrices obtained for this basis are

C = (�(�i)) = ((�j�)i);

B = (�j;�) =
1

n
((�i�)�j);

A = (�k
ij) with �k

ij =

8><>:
1 for i = j + k;

b�1 for i + n = j + k;

0 else,

and
E = t(1; 0; : : : ; 0):
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