
ON LIE ALGEBRAS IN THE CATEGORY OF

YETTER-DRINFELD MODULES

BODO PAREIGIS

Abstract. The category of Yetter-Drinfeld modules YDK
K

over a
Hopf algebra K (with bijektive antipode over a �eld k) is a braided
monoidal category. If H is a Hopf algebra in this category then
the primitive elements of H do not form an ordinary Lie algebra
anymore. We introduce the notion of a (generalized) Lie algebra in
YDK

K
such that the set of primitive elements P (H) is a Lie algebra

in this sense. Also the Yetter-Drinfeld module of derivations of
an algebra A in YDK

K
is a Lie algebra. Furthermore for each Lie

algebra in YDK
K
there is a universal enveloping algebra which turns

out to be a Hopf algebra in YDK
K
.
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1. Introduction

The concept of Hopf algebras in braided categories has turned out
to be very important in the context of understanding the structure
of quantum groups and noncommutative noncocommutative Hopf al-
gebras. In particular the work of Radford [7], Majid [3], Lusztig [2],
and Sommerh�auser [8] show the importance of the decomposition of
quantum groups into a product of ordinary Hopf algebras and of Hopf
algebras in braided categories.
Since by the work of Yetter [9] Hopf algebras in braided categories

that are de�ned on an underlying (�nite-dimensional) vector space can
be considered as Hopf algebras in some category of Yetter-Drinfeld
modules, we will restrict our attention to Hopf algebras H in a category
of Yetter-Drinfeld modules YDK

K over a Hopf algebra K with bijective
antipode.
There are two structurally interesting and important concepts that

survive in this generalized situation, the concept of group-like elements
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(�(g) = g
g, "(g) = 1) and the concept of primitive elements (�(x) =
x
 1 + 1
 x, "(x) = 0).
For ordinary Hopf algebras H the set of primitive elements P (H) of

H forms a Lie algebra. This result (in a somewhat generalized form)
still holds for Hopf algebras in a symmetric monoidal category. This
is, however, not true for braided monoidal categories.
There have been various attempts to generalize the notion of Lie

algebras to braided monoidal categories. The main obstruction for such
a generalization is the assumption that the category is only braided and
not symmetric. One of the most important examples of such braided
categories is given by the category of Yetter-Drinfeld modules YDK

K

over a Hopf algebra K with bijective antipode which is always properly
braided (except for K = k, the base �eld) [6].
We introduce a concept of Lie algebras in YDK

K that generalizes the
concepts of ordinary Lie algebras, Lie super algebras, Lie color algebras,
and (G;�)-Lie algebras as given in [5].
The Lie algebras de�ned on Yetter-Drinfeld modules have partially

de�ned n-ary bracket operations for every n 2 N and every primitive
n-th root of unity. They satisfy generalizations of the (anti-)symmetry
and Jacabi identities.
Our main aim is to show that these Lie algebras have universal en-

veloping algebras which turn out to be Hopf algebras in YDK
K . Con-

versely the set of primitive elements of a Hopf algebra in YDK
K is such

a generalized Lie algebra. We also give an example that generalizes the
concept of orthogonal or symplectic Lie algebras.

2. Braid Symmetrization

We begin with two simple module theoretic observations. The fol-
lowing is well known: if A;B are algebras and M is an A-B-bimodule,
then HomA(:P; :M) is a right B-module for every A-module P . We
need a comodule analogue of this.
Let A be an algebra, C be a coalgebra, and AM

C be an A-C-
dimodule, i.e. a left A-module and a right C-comodule such that
Æ(am) = (a
 1)Æ(m).

Proposition 2.1. Let P be a �nitely generated left A-module. Then
HomA(:P; :M) is a right C-comodule with the canonical comodule struc-
ture such that�
HomA(P;M)

Æ
�! HomA(P;M)
C �! HomA(P;M
C)

�
= HomA(P; Æ):

Proof. Let p1; : : : ; pn be a generating set of P and let f 2 HomA(:P; :M).
Let mi := f(pi). Then by the structure theorem on comodules the mi
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are contained in a �nite dimensional subcomodule M0 � M which is
even a comodule over a �nite dimensional subcoalgebra C0 � C, i.e.
the diagram

M0 M0 
C0
-Æ

M M 
 C-Æ
? ?

commutes. Furthermore M1 := AM0 is a C0-comodule contained in
M , since M is a dimodule, and f : P �! M obviously factors through
M1. Since M and M1 are dimodules the diagram

HomA(:P; :M1) HomA(:P; :M1 
 C0)-
Æ�

HomA(:P; :M) HomA(:P; :M 
C)-
Æ�

HomA(:P; :M1)
 C0
�
�=

HomA(:P; :M)
 C�
? ? ?

commutes, so each f has a uniquely de�ned image Æ�(f) 2 HomA(:P; :M)

C. Now it is easy to check that this map induces a comodule structure
on HomA(P;M). �

The second observation is the following. We consider k-algebras
A and B. Let � : B �! A be an algebra homomorphism. � in-
duces an underlying functor V� : A-Mod �! B-Mod with right adjoint
HomB(A; -) : B-Mod �! A-Mod. If � : B �! A is surjective then
HomB(A;M) �! HomB(B;M) �= M is injective, so that we can iden-
tify HomB(A;M) = fm 2M jKer(�)m = 0g.
Let Bn be the Artin braid group with generators �i, i = 1; : : : ; n� 1

and relations

�i�j = �j�i if ji� jj � 2;
�i�i+1�i = �i+1�i�i+1:

(1)

Let � 2 k be invertible. Then kBn 3 �i 7! ��i 2 kBn (for the generators
�i of Bn) is an algebra automorphism denoted again by � : kBn �! kBn.
This holds true since the relations for Bn are homogeneous.
(Observe that this construction can be performed for every group

algebra if the group is given by generators and homogeneous relations.
The given construction of an automorphism for every � 2 U(k) de�nes
a group homomorphism U(k) �! Aut(kBn) �! Aut(kBn-Mod).)
Now consider the canonical quotient homomorphism Bn �! Sn from

the braid group onto the symmetric group. It induces a surjective
homomorphism 
 : kBn �! kSn with kernel

Ker(
) = h (� 2i � 1)'j'; 2 Bn; i = 1; : : : ; n� 1i:
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The composition � : kBn
�
�! kBn



�! kSn de�nes a functor kBn-Mod

�! kSn-Mod by

M(�) : = HomkBn
(�kSn;M)

= fm 2M j'�1� 2i '(m) = �2m 8' 2 Bn; i = 1; : : : ; n� 1g:
= fm 2M j� 2i '(m) = �2'(m) 8' 2 Bn; i = 1; : : : ; n� 1g:(2)

This holds since the map 
 : kBn �! kSn has as kernel the two-
sided ideal generated as a k-subspace by f (� 2i � 1)' j ;' 2 Bn; i =
1; : : : ; n � 1g. So f 2 HomkBn

(�kSn;M) with f(1) = m 2 M , i�
��1( (� 2i � 1)')m = 0 for all  ;'; i, i� ��1(� 2i � 1)'m = 0 for all '; i,
i� � 2i 'm = �2'm for all '; i, i� '�1� 2i '(m) = �2m for all '; i.
If the action of Bn onM is given by an action of Sn and the canonical

epimorphism Bn �! Sn, then the construction of the M(�) becomes
trivial, since M(�) = fm 2 M j� 2i '(m) = �2'(m) = '(m)g = 0 if
�2 6= 1 and M(�1) = M(1) = M . Observe that the module M(�)
depends only on �2, but that the action of kSn on M(�) depends on �.
M(1) gives a solution of the following universal problem.

Proposition 2.2. For every kBn-module M the subspace

M(1) := fm 2M j'�1� 2i '(m) = m 8' 2 Bn; i = 1; : : : ; n� 1g

is a kSn-module and the inclusion M(1) �! M is a kBn-module ho-
momorphism, such that for every kSn-module T and every kBn-module
homomorphism f : T �! M there is a unique kSn-module homomor-
phism g : T �!M(1) such that the diagram

M(1) M-�

T

?

g f
H
H
H
H
H
HHj

commutes.

De�nition 2.3. We call the functor -(�) : kBn-Mod �! kSn-Mod the
�-symmetrization of kBn-modules.

The de�nition gives

M(�) = fm 2 M j'�1� 2i '(m) = �2m 8' 2 Bn; i = 1; : : : ; n� 1g:

The action of Sn on M(�) is given by

�i(m) = ��1�i(m); (3)

where �i resp. �i are the canonical generators of Sn resp. Bn. Thus
M(�) is also a kBn-submodule of M . Since the functor M 7! M(�)
is a rightadjoint functor, it preserves limits. Like for eigenspaces we
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have that the sum of the subspaces M(�) for all � with di�erent �2 is
a direct sum. On M(�) we have two distinct kSn-structures �i(m) =
���1�i(m) and �i = ��1�i(m), since � and �� de�ne the same subspace
M(�) =M(��) �M .
The �-symmetrizationM(�) of M can also be calculated by

Lemma 2.4.

M(�) = fm 2M j��1i ��1i+1 : : : �
�1
j�1�

2
j �j�1 : : : �i+1�i(m) = �2m 81 � i � j � n�1g

which reduces the number of conditions to be imposed on the m 2 M
in order to be in M(�).

Proof. Given in Appendix. �

One of the interesting kBn-structures, for which we will apply the
previous construction, occurs on n-fold tensor products Mn := M 

: : :
M of an objectM in a braided monoidal category of vector spaces.
Let K be a Hopf algebra. Let M be an K-module such that M is

a kBn-K-bimodule. The functoriality of our construction then makes
M(�) again an K-module and in fact a kSn-K-bimodule.
Let M be an K-comodule such that M is a kBn-K-dimodule. Then

by Proposition 2.1 M(�) is an K-comodule and in fact a kSn-K-
dimodule.
Let K be a Hopf algebra with bijective antipode. Let YDK

K denote
the category of Yetter-Drinfeldmodules overK, i.e. of rightK-modules
and right K-comodules M such that

P
(x � h)0 
 (x � h)1 =

P
(x0 �

h2)
 S(h1)x1h3 for all x 2 M . The usual tensor product makes YDK
K

a monoidal category. YDK
K has a braiding given by �X;Y : X 
 Y

�! Y 
 X, � (x 
 y) =
P
y0 
 xy1. We assume that the reader is

familiar with the properties of the Bn-action that is induced by the
braiding � on n-fold tensor products ([4] 10.6).

Theorem 2.5. Let K be a Hopf algebra with bijective antipode. Then
for each � 2 k� and each n � 2 the construction given above de�nes a
(non-additive) functor

YDK
K 3M 7! (M 
 : : :
M)(�) 2 YDK

K :

Proof. If M 2 YDK
K then the n-fold tensor product M 
 : : : 
M is

a Yetter-Drinfeld module on which Bn and thus kBn acts in such a
way, that M is a (kBn;K)-bimodule and a (kBn;K)-dimodule. The �-
symmetrization functor -(�) preserves the module and comodule struc-
tures hence the Yetter-Drinfeld structure.
The functor is not additive since the \diagonal" functorM 7!M
M

is not additive. �
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We abbreviate Mn(�) := M
n(�) = M 
 : : : 
M(�). Then Mn(�)
is a submodule of Mn in the category of Yetter-Drinfeld modules and
the elements in Mn(�) are of the form z =

P
k xk;1 
 : : : 
 xk;n. We

often suppress the summation index and summation sign and simply
write z = z1 
 : : :
 zn 2 M

n(�) although Mn(�) does not decompose
into a tensor product.

3. Symmetric Multiplication and Jacobi Identities

For the rest of the paper let C be the category YDK
K of Yetter-Drinfeld

modules over a Hopf algebra K with bijective antipode over a �eld k.
We study objects P 2 C together with (partially de�ned) operations in
C

[:; :] : P 
 : : :
 P (�) = P n(�) �! P

for all n 2 N and all primitive n-th roots of unity �.
Occasionally we write [:; :]n for such an operation [:; :]. By composing

such operations certain additional operations may be constructed as
follows.

Proposition 3.1. Let � be a primitive n-th roots of unity. Then the
operations

[:; [:; :]n]2 : P
n+1(�) 3 x1 
 : : :
 xn+1 7! [x1; [x2; : : : ; xn+1]] 2 P

and

[[:; :]n; :]2 : P
n+1(�) 3 x1 
 : : :
 xn+1 7! [[x1; : : : ; xn]; xn+1] 2 P

are well de�ned.

Proof. Given in Appendix. �

We will have to consider objects

P n+1(�1; �) := P
P n(�)\fz 2 P n+1j8' 2 Sn : (1
')
�1� 21 (1
')(z) = zg:

Since this is a kernel (limit) construction in C, P n+1(�1; �) is again an
object in C.

Proposition 3.2. Let � be a primitive n-th roots of unity. Then the
operations

[:; [:; :]n]2 : P
n+1(�1; �) 3 x
 y1 
 : : :
 yn 7! [x; [y1; : : : ; yn]] 2 P

and

[:; [:; :]2; :]n�i�1 : : : �1 : P
n+1(�1; �) 3 x
y1
: : :
yn 7! [y1; : : : ; [x; yi]; : : : ; yn] 2 P

are well de�ned.

Proof. Given in Appendix. �
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We introduce special bracket multiplications which then lead to the
de�nition of a Lie algebra on a Yetter-Drinfeld module.

De�nition 3.3. Let A be an algebra in C = YDK
K and let rn : A 


: : :
A �! A denote the n-fold multiplication. We de�ne a bracket or
symmetric multiplication

[:; :] : An(�) �! A by [z] :=
X
�2Sn

rn�(z)

where the action of Sn on An(�) is given as in (3).

We will only use those bracket operations which are de�ned with �
a primitive n-th root of unity (for all n 2 N and all �).
We consider these bracket operations as a generalization of the Lie-

bracket [-; -] : L�L �! L or [{] : L
L �! L. Observe that our bracket
operation is only partially de�ned and should not be considered as a
multilinear operation, since An(�) � An is just a submodule in C and
does not necessarily decompose into an n-fold tensor product. The
elements in An(�) are, however, of the form z =

P
k xk;1 
 : : :
 xk;n.

If we suppress the summation index and the summation sign then
we may write the bracket operation on z = x1 
 : : :
 xn also as [z] =
[x1; : : : ; xn]. If we de�ne

�(z) =: x��1(1) 
 : : :
 x��1(n) (4)

then we get

[x1; : : : ; xn] =
X
�2Sn

x�(1) � : : : � x�(n):

Observe that the components x1; : : : ; xn in this expression are inter-
changed according to the action of the braid group resp. the symmetric
group on An(�), so x�(1) 
 : : :
 x�(n) is only a symbolic expression.
The bracket operation obviously satis�es the \anti"-symmetry iden-

tity

[�(z)] = [z] 8� 2 Sn: (5)

We apply Proposition 3.1 to an algebra A in C with the operations
given in De�nition 3.3 and get

Theorem 3.4. (1. Jacobi identity) For all n 2 N, for all primitive
n-th roots of unity �, and for all z 2 An+1(�) we have

n+1X
i=1

[xi; [x1; : : : ; x̂i; : : : ; xn+1]] =
n+1X
i=1

[:; [:; :]n]2(1 : : : i)(z) = 0;
(6)

where we use the notation (4).
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Proof. We de�ne (Sn+1)(i) := f� 2 Sn+1j�(i) = 1g. Then Sn+1 =S
i(Sn+1)(i). For � 2 (Sn+1)(i) let �� := �(i : : :1). Since ��(1) = 1 there is

a unique � 2 Sn with �� = 1 
 � and � = (1 
 �)(1 : : : i). So we obtain
a bijection

Sn 3 � 7! (1
 �)(1 : : : i) 2 (Sn+1)(i):

Analogously we de�ne (Sn+1)(i) := f� 2 Sn+1j�(i) = n + 1g and get a
bijection

Sn 3 � 7! (�
 1)(n + 1 : : : i) 2 (Sn+1)
(i):

Now observe that �n : : : �1(z) = �n�n : : : �1(z) = (n + 1 : : : 1)(z) (by
�n = 1) for z 2 P n+1(�) to get

Pn
i=1 [:; [:; :]](1 : : : i)(z) =

=
Pn

i=1r(1
 [:; :])(1 : : : i)(z)�r([:; :]
 1)�n : : : �1(1 : : : i)(z)
=
Pn

i=1r(1
 [:; :])(1 : : : i)(z)�r([:; :]
 1)(n+ 1 : : : i)(z)
=
Pn

i=1

P
�2Snr

n+1(1 
 �)(1 : : : i)(z)�rn+1(� 
 1)(n + 1 : : : i)(z)
=
P

�2Sn+1
rn+1�(z)�rn+1�(z) = 0:

�

Theorem 3.5. (2. Jacobi identity) For all n 2 N, for all primitive
n-th roots of unity �, and for all z = x
 y1 
 : : : 
 yn 2 An+1(�1; �)
we have

[x; [y1; : : : ; yn]] =
nX
i=1

[y1; : : : ; [x; yi]; : : : ; yn] (7)

where y1 
 : : :
 yi�1 
 x
 yi 
 : : :
 yn := �i�1 : : : �1(z) and

[y1; : : : ; yi�1; [x; yi]; : : : ; yn] = [:; [:; :]2; :]n�i�1 : : : �1(z): (8)

Proof. The equation in the Theorem can also be written as

[:; [:; :]n]2(z) =
nX
i=1

[:; [:; :]2; :]n�i�1 : : : �1(z):

Lemma 8.1 together with ~'(i) = j shows

rn'(1 
 : : :
r 
 : : :
 1)�i�1 : : : �1(z)
= rn(1 
 : : :
r
 : : :
 1)'(i)�i�1 : : : �1(z)
= rn+1�j�1 : : : �1(1 
 ')(z);

rn'(1 
 : : :
r 
 : : :
 1)�i : : : �1(z)
= rn(1 
 : : :
r
 : : :
 1)'(i)�i : : : �1(z)
= rn+1�j : : : �1(1 
 ')(z);
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hence

rn'(1
 : : :
r 
 : : :
 1)�i�1 : : : �1(z)
= rn+1�k�1 : : : �1(1
 ')(z)
= rn+1�l : : : �1(1
 ')(z)
= rn'(1
 : : :
r
 : : :
 1)�j : : : �1(z):

(9)

for all i; j = 1; : : : ; n with ~'(i) = ~'(j) + 1, i.e. for all i except ~'�1(1)
and all j except ~'�1(n). The other i's and j's used in (9) are in bijective
correspondence.
To prove the equation of the theorem we write each � 2 Sn as �r'

with a representative ' 2 Bn and a suitable power �r according to (3)
and use (9). Then we get
Pn

i=1[:; [:; :]2; :]n�i�1 : : : �1(z) =
=
Pn

i=1[:; :]n(1
 : : :
 (r�r� )
 : : :
 1)�i�1 : : : �1(z) =
=
Pn

i=1

P
�2Sn r

n�r'(1 
 : : :
r
 : : :
 1)�i�1 : : : �1(z)
�
Pn

j=1

P
�2Sn r

n�r'(1 
 : : :
r
 : : :
 1)�j�j�1 : : : �1(z)
=
P

�2Sn r
n+1(1 
 �r')(z)�

P
�2Sn r

n+1�n : : : �1(1 
 �r')(z)
=
P

�2Sn r
n+1(1 
 �r')(z)�

P
�2Sn r

n+1(�r'
 1)�n : : : �1(z)
= r(1


P
�2Sn r

n�)(z)�r(
P

�2Sn r
n� 
 1)�P;Pn(z)

= (r�r� )(1
 [:; :]n)(z)
= [:; [:; :]n]2(z):

�

Clearly there are symmetric right sided identities.

4. Lie Algebras on Yetter-Drinfeld Modules

Now we can de�ne the notion of a Lie algebra in the category of
Yetter-Drinfeld modules.

De�nition 4.1. A Yetter-Drinfeld module P together with operations
in YDK

K

[:; :] : P 
 : : :
 P (�) = P n(�) �! P

for all n 2 N and all primitive n-th roots of unity � is called a Lie
algebra if the following identities hold:

(1) for all n 2 N, for all primitive n-th roots of unity �, for all
� 2 Sn, and for all z 2 P n(�)

[z] = [�(z)];

(2) for all n 2 N, for all primitive n-th roots of unity �, and for all
z 2 P n+1(�)

n+1X
i=1

[xi; [x1; : : : ; x̂i; : : : ; xn+1]] =
n+1X
i=1

[:; [:; :]](1 : : : i)(z) = 0;
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where we use the notation (4),
(3) for all n 2 N, for all primitive n-th roots of unity �, and for all

z = x
 y1 
 : : :
 yn 2 P n+1(�1; �) we have

[x; [y1; : : : ; yn]] =
nX
i=1

[y1; : : : ; [x; yi]; : : : ; yn]

where we use the notation (8).

Corollary 4.2. Let A be an algebra in YDK
K . Then A carries the

structure of a Lie algebra AL with the symmetric multiplications

[{] : An(�) �! A by [z] :=
X
�2Sn

rn�(z):

for all n 2 N and all roots of unity � 2 k�.

Proof. This is a rephrasing of the \anti"-symmetry identity (5) and the
Jacobi identities (6) and (7) in Theorems 3.4 and 3.5. �

5. The Lie Algebra of Primitive Elements

Let A be an algebra in C = YDK
K . Then A
A is an algebra with the

multiplicationA
A
A
A
1
�
1
�! A
A
A
A

r
r
�! A
A. Let p : A

�! A
A be the map p(x) := x
 1 + 1
 x. Then p(= 1 
 � + � 
 1)
is in C but p is not an algebra morphism. Let pn : An �! (A
A)n be
the n-fold tensor product of p with itself.

Lemma 5.1. Let H be a Hopf algebra in C. Then P (H) := fx 2
Hj�(x) = x
 1 + 1
 xg is a Yetter-Drinfeld submodule of H in C.

Proof. P (H) = Ker(�� p). �

In particular we have Æ(x) 2 P (H) 
 K and x� 2 P (H) for all
x 2 P (H) and all � 2 K.

Lemma 5.2. pn(An(�)) � (A
A)n(�).

Proof. By Theorem 2.5 p : A �! A 
 A induces pn : An(�) �! (A 

A)n(�). �

Theorem 5.3. Let � be a primitive n-th root of unity and let z 2 An(�).
Then

[pn(z)] = p([z]):

Proof. If z =
P

k xk;1 
 : : : 
 xk;n 2 An(�) then the equation of the
theorem reads as

[
P

k(xk;1 
 1 + 1
 xk;1)
 : : :
 (xk;n 
 1 + 1
 xk;n)] =
[
P

k xk;1 
 : : :
 xk;n]
 1 + 1 
 [
P

k xk;1 
 : : :
 xk;n] : (10)
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We want to evaluate

[
P

k(xk;1 
 1 + 1 
 xk;1)
 : : :
 (xk;n 
 1 + 1 
 xk;n)]
=
P

�2Sn r
n�(
P

i(xk;1 
 1 + 1
 xk;1)
 : : :
 (xk;n 
 1 + 1 
 xk;n))

where � 2 Sn operates on pn(z) 2 (A
A)n(�) as described in section
2.
Let x; y 2 A and � (x 
 y) =

P
i ui 
 vi. Then (1 
 x) � (y 
 1) =

(r
r)(
P

i 1
ui
vi
1) =
P

i ui
vi = � (x
y) =
P

i(ui
1) �(1
vi).
So we have

(x
 1)(y 
 1) = (xy 
 1);
(x
 1)(1
 y) = (x
 y);
(1 
 x)(1
 y) = (1 
 xy);
(1 
 x)(y 
 1) = � (x
 y):

(11)

We expand a product (x1 
 1 + 1 
 x1) � : : : � (xn 
 1 + 1 
 xn). It
produces after multiplication 2n summands, each a product of n terms.
A typical product is (x1 
 1)(1 
 x2)(x3 
 1) : : : , some of the factors
being of the form xj 
 1, the others of the form 1 
 xj. To evaluate
such a product we use the rule of multiplication in A 
 A given by
rA
A = (r
r)(1
 � 
 1).
To explain the following calculation we consider as an example the

product (x1 
 1)(1 
 x2)(x3 
 1)(1 
 x4)(x5 
 1). It is calculated with
the following braid diagram

� � � �

The second and fourth factors are pulled over to the right and then all
factors are multiplied according to (11). Thus we have (x1 
 1)(1 

x2)(x3
1)(1
x4)(x5
1) = (r3
r2)'(x1
x2
x3
x4
x5), where
' = �3�4�2 as de�ned by the given braid diagram.
We prove now by induction on n that for every product (x1
 1)(1


x2)(x3
 1) : : : with i factors of the form xj 
 1 and n� i factors of the
form 1
 xj there is an element ' 2 Bn such that

(x1 
 1)(1 
 x2)(x3 
 1) : : : = (ri 
rn�i)'(x1 
 : : :
 xn):

Furthermore if t denotes the number of pairs of factors f1; f2 in the
product (x1
1)(1
x2)(x3
1) : : : where f1 is to the left of f2, f1 is of
the form (1
 xj) and f2 is of the form (xj 
 1), or brie
y the number
of factors in reverse position, then ' is composed of t generators �j of
Bn. Observe that ' and the number t are uniquely determined by the
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properties of the multiplication of A
A and the braid group Bn, which
has homogeneous relations.
For n = 1 we have the trivial cases x 
 1 = (r1 
 r0)(x) and

1 
 x = (r0 
r1)(x), where r1 = id and r0 = 1. For the induction
nothing is to be proved if i = n or i = 0. In these cases we have t = 0.
We assume now that the claim is true for n. The induction step for

i 6= 0; n+ 1 is given by

(x1 
 1) �(1 
 x2) � (x3 
 1) � : : : � (1
 xn+1) =
= f(ri 
rn�i)'(x1 
 : : :
 xn)g � (1 
 xn+1)
= f(ri 
rn�i)

P
k(uk;1 
 : : :
 uk;n)g � (1 
 xn+1)

= (
P

k uk;1 � : : : � uk;i 
 uk;i+1 � : : : � uk;n) � (1
 xn+1)
=
P

k(uk;1 
 1) � : : : � (uk;i 
 1) � (1 
 uk;i+1) � : : : � (1
 uk;n) � (1 
 xn+1)
= (ri 
rn�i+1)

P
k(uk;1 
 : : :
 uk;n 
 xn+1)

= (ri 
rn�i+1)('
 1)(x1 
 : : :
 xn+1)

where t, the number of factors in reverse position, does not change,
neither does the number of generators �i used in the representation of
'
 1. The second possibility is

(x1 
 1) �(1 
 x2) � (x3 
 1) � : : : � (xn+1 
 1)
= f(ri 
rn�i)'(x1 
 : : :
 xn)g � (xn+1 
 1)
= (
P

k uk;1 � : : : � uk;i 
 uk;i+1 � : : : � uk;n) � (xn+1 
 1)
= (
P

k uk;1 � : : : � uk;i 
 uk;i+1 � : : : � uk;n�1) � (1
 uk;n) � (xn+1 
 1)

= (
P

k uk;1 � : : : � uk;i 
 uk;i+1 � : : : � uk;n�1) � (vk;n 
 1) � (1 
 vk;n+1)
= (ri+1 
rn�i�1)�(

P
k uk;1 
 : : :
 uk;n�1 
 vk;n) � (1
 vk;n+1)

= (ri+1 
rn�i)(� 
 1)(
P

k uk;1 
 : : :
 uk;n�1 
 vk;n 
 vk;n+1)
= (ri+1 
rn�i)(� 
 1)(1n�1 
 � )('
 1)(x1 
 : : :
 xn+1):

where '(x1
 : : :
xn) =
P

k uk;1
 : : :
uk;n, � (uk;n
xn+1) =
P
vk;n


vk;n+1, and (1n�1 
 � )(' 
 1)(x1 
 : : :
 xn 
 xn+1) =
P

k uk;1 
 : : :

uk;n�1 
 vk;n 
 vk;n+1. We determine the number t( ) of generators
�i occurring in  = (� 
 1)(1n�1 
 � )(' 
 1). We have by induction
t(') = tn the number of factors in (x1 
 1) � (1 
 x2) � (x3 
 1) � : : : in
reverse position. Also we have tn+1 = tn+(n� i) the number of factors
in (x1
 1) � (1
 x2) � (x3
 1) � : : : � (xn+1
 1) in reverse position. Then
t( ) = t((�
 1)(1n�1
 � )('
 1)) = t(�
 1)+ t(1n�1
 � )+ t('
 1) =
(n� i� 1) + 1 + tn = tn+1.
If we sum up we obtain

(x1
1+1
x1)�: : :�(xn
1+1
xn) =
X
i

X
'i

(ri
rn�i)'i(x1
: : :
xn);

for certain 'i 2 Bn which arise in the evaluation given above.
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Now let z 2 An(�). We expand the products in rnpnz =
P

k(xk;1 

1 + 1 
 xk;1) � : : : � (xk;n 
 1 + 1 
 xk;n). Each of these products in the
sum is treated in the same way as described above. Using (3) we get

rnpn(z) =
P

k(xk;1 
 1 + 1
 xk;1) � : : : � (xk;n 
 1 + 1
 xk;n)
=
P

k

P
i

P
'i
(ri 
rn�i)'i(xk;1 
 : : :
 xk;n)

=
P

i

P
'i
(ri 
rn�i)'i(z)

=
P

i

P
'i
(ri 
rn�i)��t('i)�i(z)

where �i 2 Sn are the canonical images of the 'i 2 Bn and t('i) is the
number of factors �j in the representation of 'i.
This gives us

[pn(z)] =
P

�2Sn r
npn�(z)

=
P

�

P
i

P
'i �

�t('i)(ri 
rn�i)�i�(z)

=
P

�

P
i

�P
'i
��t('i)

�
(ri 
rn�i)�(z)

=
P

i ci(r
i 
rn�i)

P
� �(z)

where the factors ci =
P

'i �
�t('i) 2 k. We want to show that the ci

are zero for all 0 < i < n.
So �x n and i. Consider one product (x1
1) �(1
x2) �(x3
1) � : : : in

the development of (x1
1+1
x1)�: : :�(xn
1+1
xn) =
P

i

P
'i
(ri


rn�i)'i(x1
: : :
xn) and its corresponding 'i. The chosen summand is
completely determined by giving the positions in f1; : : : ; ng of the n�i
factors of the form (1 
 xj). The �rst of these factors has �1 factors
of the form (xj 
 1) to its right with 0 � �1 � i. So it contributes
�1 pairs of factors in reverse position. The second factor of the form
(1
xj) contributes �2 (with 0 � �2 � �1 � i) pairs of factors in reverse
position, and so on. We obtain t = �1+�2+ : : :+�n�i pairs in reverse
position. If we know the �i with 0 � �n�i � : : : � �2 � �1 � i then
they also determine uniquely the position of the factors of the form
(1 
 xj). Each partition of t = �1 + �2 + : : : + �n�i into (at most)
n� i parts each � i gives one term ��t in ci =

P
'i
��t('i) and we �nd

p(i; n� i; t) partitions of t into at most n� i parts each � i. So we get

ci =
X
t�0

p(i; n� i; t)��t:

By a theorem of Sylvester ([1] Theorem 3.1) we have

X
t�0

p(i; n� i; t)qt =
(1� qn)(1� qn�1) : : : (1� qn�i+1)

(1� qi)(1� qi�1) : : : (1 � q)

hence ci = 0 for 0 < i < n since � and also ��1 are primitive n-th roots
of unity.
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So we have shown

[pn(z)] =
P

�2Sn r
npn�(z)

=
P

i ci(r
i 
rn�i)

P
� �(z)

=
P

�r
n�(z)
 1 + 1


P
�r

n�(z)
= p[z]:

�

Corollary 5.4. Let H be a Hopf algebra in C. Then the set of primitive
elements P (H) forms a Lie algebra in C.

Proof. By Lemma 5.1 P (H) is a Yetter-Drinfeld submodule of H. Let
z 2 P (H)n(�). Then p([z]) = [pn(z)] = [�n(z)] = �([z]) since �
is an algebra homomorphism. Hence [z] 2 P (H). So P (H) is a Lie
subalgebra of HL. �

De�nition 5.5. Let A be an algebra in C and let end(A) be the inner
endomorphism object of A in C, i.e. the Yetter- Drinfeld module end(A)
satisfying C(X 
A;A) �= C(X; end(A)) for all X 2 C. It can be shown
that

end(A) := ff 2 Hom(A;A)j9
P
f(0) 
 f(1) 2 Hom(A;A)
K8a 2 A :P

f(0)(a)
 f(1) =
P
f(a(0))(0) 
 f(a(0))(1)S(a(1))g

is the Yetter-Drinfeld module with the required universal property.
end(A) operates on A by a canonical map ev : end(A) 
 A �! A
with ev(f 
 a) = f(a).
A derivation from A to A is a linear map (d : A �! A) 2 end(A)

such that

d(ab) = d(a)b+ (1
 d)(� 
 1)(d
 a
 b)

for all a; b 2 A. Observe that in the symmetric situation this means
d(ab) = d(a)b+ ad(b).

It is clear that all derivations from A to A form an object Der(A) in
C and that there is an operation Der(A)
A �! A.

Corollary 5.6. Der(A) is a Lie algebra.

Proof. Let m denote the multiplication of A. An endomorphism x :
A �! A in end(A) is a derivation i� m(x 
 1 + 1 
 x) = xm where
(x
 y)(a
 b) = (ev
 ev)(1
 � 
 1)(x
 y
 a
 b) for elements a and
b in A and elements x and y in end(A). So x 2 end(A) is a derivation
i� mp(x) = xm.
To show that Der(A) is a Lie algebra it suÆces to show that it is

closed under Lie multiplication since it is a subobject of end(A), which
is an algebra in the category C. Let � be a primitive n-th root of unity.
Let r : end(A)
 end(A) �! end(A) be the multiplication of end(A).
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If x1; x2 2 Der(A) then mp(x1)p(x2) = x1mp(x2) = x1x2m or more
generally m(rnpn)(x1 
 : : : 
 xn) = rn(x1 
 : : : 
 xn)m for all x1 

: : :
 xn 2 Der(A)n. Thus we get for z 2 Der(A)n(�)

mp([z])= m[pn(z)] =
P
m(rn�(pn(z)))

=
P
m(rnpn�(z)) =

P
rn�(z)m = [z]m

hence [z] 2 Der(A). �

6. The Universal Enveloping Algebra of a Lie Algebra

As in [5] we can now construct the universal enveloping algebra of a
Lie algebra P in C as U(P ) := T (P )=I where T (P ) is the tensor algebra
over P , which lives again in C, and where I is the ideal generated by the
relations [z]�

P
rn�(z) for all z 2 P n(�), for all n and for all primitive

n-th roots of unity �. Then U(P ) clearly is a universal solution for the
following universal problem

P U(P )-�

f
H
H
H
H
H
HHj

A
?

g

where for each morphism of Lie-algebras f there is a unique morphism
of algebras g such that the diagram commutes.

Theorem 6.1. Let P be a Lie algebra in C. Then the universal en-
veloping algebra U(P ) is a Hopf algebra in C.

Proof. It is easily seen that Æ : P �! (U(P )
U(P ))L inMkG given by
Æ(x) := x
 1 + 1
 x where x is the canonical image of x 2 P in U(P )
and the counit " : U(P ) �! k given by the zero morphism 0 : P �! k
de�ne the structure of a bialgebra on U(P ) in C.
Now we want to de�ne S : U(P ) �! U(P )op+ by the Lie homomor-

phism S : P �! U(P )op+, S(x) = ��x. Here Aop+ is the algebra ob-

tained from the algebra A by the multiplicationA
A
�
�! A
A

r
�! A.

Then for z 2 P n(�) we have

S([z]) = �[z] = �
P

�r
n�(z) = �

P
�r

n���1�(z)

= �
P

�(r
op)n��1�(z) (by (3)) = �

P
�(r

op)n�
n(n�1)

2 ��1�(z)

= ��
n(n�1)

2 [z] = (�1)n[z] = [Sn(z)]

where � 2 Bn is the braid map given by the twist of all n strands with
source f1; : : : ; ng and domain fn; : : : ; 1g, � = (�1) : : : (�n�2 : : : �2�1)(�n�1 : : : �2�1)
and
��

n(n�1)
2 � = � 2 Sn.
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Hence S is a Lie homomorphism and factorizes through U(P ). Since
U(P ) is generated as an algebra by P we prove that S is the antipode
by complete induction:

r(1
 S)�(1) = 1S(1) = 1 = "(1);

r(1
 S)�(x) = x+ S(x) = 0 = "(x):

Before we prove the general induction step we observe that � : U(P )
�! U(P ) 
 U(P ) is a morphism in C = YDK

K so that we have in
particular
X

(a0)1
 (a0)2
a
1 =
X

(a1)
0
 (a2)

0
 (a1)
1(a2)

1 2 U(P )
U(P )
K

for a 2 U(P ). (Here we use Æ(a) =
P
a0 
 a1 to denote the comodule

structure in YDK
K .) Assume now that a is writte as a product of n �

1 elements in P and that
P
a1S(a2) = 0. Then for all x 2 P we

have
P
(a1)0S((a2)0)S(x(a1)1(a2)1) =

P
(a0)1S((a0)2)S(xa1) = 0 since

Æ(a) =
P
a0 
 a1 2 P 
 : : :
 P 
K � U(P )
K. So we have

r(1
 S)�(xa) = r(1
 S)
P
(xa1 
 a2 + (a1)0 
 (x(a1)1)a2)

=
P
xa1S(a2) +

P
(a1)0S((x(a1)1)a2)

=
P
(a1)0S((a2)0)S(x(a1)1(a2)1) = 0 = �"(xa):

The second condition r(S 
 1)� = �" is proved in a similar way (by
using elements of the form ax and the equation

P
S((a�)1)(a�)2 = 0

for a written as a product of n elements in P and � 2 K). So S is an
antipode and U(P ) is a Hopf algebra in C. �

7. (G;�) Lie algebras

In [5] we introduced and studied the concept of G-graded Lie alge-
bras or (G;�)-Lie algebras for an abelian group G with a bicharacter
� generalizing the concepts of Lie algebras, Lie super algebras, and
Lie color algebras. The reader may �nd examples of such (G;�)-Lie
algebras in [5]. A generalization of this concept of Lie algebras to
the group graded case for a noncommutative group requires the use of
Yetter-Drinfeld modules over kG. We show that (G;�)-Lie algebras
are Lie algebras on Yetter-Drinfeld modules in the sense of this paper.
We use the notation of [5].
Let G be an abelian group with a bicharacter � : G
ZG �! k�. Let

P be a kG-comodule. Then P is a Yetter-Drinfeld module over kG [4]
with the module structure x � g = �(h; g)x for homogeneous elements
x = xh 2 M with Æ(x) = x 
 h. The braid map is � (xh 
 yg) =
yg
xh �g = �(h; g)yg
xh, hence the braiding given in [5] after Example
2.3.
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Let � 2 k� be given. Let (g1; : : : ; gn) be a �-family, i.e. �(gi; gj)�(gj; gi) =
�2. Let Q :=

P
�2Sn Pg�(1) 
 : : :
 Pg�(n).

Lemma 7.1. Q is a right Sn-module by

(x1 
 : : :
 xn)� = �(�; (g1; : : : ; gn))x�(1) 
 : : :
 x�(n)

for � 2 Sn and x1 
 : : :
 xn 2 Pg1 
 : : :
 Pgn.

Proof. We have to show the compatibility of this operation with the
composition of permutations. Let �; � 2 Sn. We use Lemma 2.2 of [5].
Then

(x1
: : :
 xn)(�� ) =
= �(��; (g1; : : : ; gn))x��(1)
 : : :
 x��(n)
= �(�; (g1; : : : ; gn))�(�; (g�(1); : : : ; g�(n)))x��(1) 
 : : :
 x��(n)
= (�(�; (g1; : : : ; gn))x�(1) 
 : : :
 x�(n))�
= ((x1 
 : : :
 xn)�)�:

�

Q becomes a left Sn-module by �(x1
: : :
xn) = �(��1; (g1; : : : ; gn))x��1(1)

: : :
 x��1(n). Thus

L
f(g1;::: ;gn) �-familyg Pg1 
 : : :
Pgn is also a left Sn-

module.
This action is connected with the action of Bn on

L
f(g1;::: ;gn) �- familyg Pg1


: : :
 Pgn by

��1�i(x1 
 : : :
 xn) = �i(x1 
 : : :
 xn) (12)

for the canonical generators �i of Bn resp. �i of Sn, since

��1�i(x1 
 : : :
 xn) =
= ��1�(gi; gi+1)x1 
 : : :
 xi+1 
 xi 
 : : :
 xn
= �(��1i ; (g1; : : : ; gn))x��1

i
(1) 
 : : :
 x��1

i
(n)

= �i(x1 
 : : :
 xn):

In particular we have

��1i ��1i+1 : : : �
�1
j�1�

2
j �j�1 : : : �i+1�i(x1 
 : : :
 xn) =

= �2��1i ��1i+1 : : : �
�1
j�1�

2
j�j�1 : : : �i+1�i(x1 
 : : :
 xn)

= �2(x1 
 : : :
 xn);

so that x1 
 : : :
 xn 2 P n(�) by Lemma 2.4. Thus we have
M

f(g1;::: ;gn) �-familyg

Pg1 
 : : :
 Pgn � P n(�):

Conversely let
P
x1
 : : :
 xn 2 P n =

L
f(g1;::: ;gn)g Pg1 
 : : :
Pgn with

homogeneous summands and assume that one of the summands is non-
zero in Pg1 
 : : :
Pgn where (g1; : : : ; gn) is not a �-family for example
by �(gi; gi+1)�(gi+1; gi) 6= �2. Then (� 2i � �2)(

P
x1 
 : : : 
 xn) has a
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non-zero component in Pg1 
 : : :
 Pgn, hence
P
x1 
 : : :
 xn cannot

be in P n(�). This proves

Proposition 7.2. Let � 2 k� be given. Then

P n(�) =
M

f(g1;::: ;gn) �-familyg

Pg1 
 : : :
 Pgn :

By Lemma 7.1 and (12) the bracket multiplication of [5] is a special
case of the bracket multiplication of this paper and (G;�)-Lie algebras
are Lie algebras over Yetter-Drinfeld modules.

Example 7.3. As a new example of Lie algebras we give one family of
examples of (G;�)-Lie algebras. Let G = C3 = f0; 1; 2g be the cyclic
group with 3 elements. De�ne the structure of a right kG-module on
a kG-comodule V (i.e. on a C3-graded vector space V = V0 � V1 � V2)
using the bicharacter � : C3
ZC3

�= C3 �! k�, �(1
1) = � a primitive
3-rd root of unity, by v � g := �(deg(v)
 g)v = �(deg(v); g)v for g 2 G
and homogeneous elements v 2 V . Then V is a Yetter-Drinfeld module.
LetA := end(V ) be the inner endomorphism object of V in kG-comod.

By Corollary 4.2 A is a Lie algebra. One veri�es easily (see [5]) that
the only non-zero components An(�) for the partial Lie multiplication
are

A2(�1) = A0 
 (A1 �A2) � (A0 �A1 �A2)
A0

and

A3(�) = A1 
A1 
A1 �A2 
A2 
A2:

Now let h:; :i : V 
 V �! k be a bilinear form on V in C. We de�ne

g(V )i := ff 2 Aij8v;w 2 V;deg(v) = j : hf(v); wi = ��(i; j)hv; f(w)ig:

This space is the homogeneous component of g(V ) � A that becomes
a Yetter-Drinfeld module.
For f 2 g(V )0 and g 2 g(V )i, i 2 C3, v 2 Vj, w 2 V we have

h[f; g](v); wi= h(fg � gf)(v); wi
= hfg(v); wi � hgf(v); wi
= �(i; j)hv; gf(w)i � �(i; j)hv; fg(w)i
= ��(i; j)hv; [f; g](w)i;

hence [f; g] 2 g(V )i. Analogously one shows [g; f ] 2 g(V )i.
For k = 1; 2; 3 let fk 2 g(V )i (i = 1 or i = 2). Then

h[f1; f2; f3](v);wi =
P

�2S3hf�(1)f�(2)f�(3)(v); wi
= (�1)

P
�2S3 �(i; i+ i+ j)�(i; i+ j)�(i; j)hv; f�(3)f�(2)f�(1)(w)i

= �hv; [f1; f2; f3](w)i;
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hence [f1; f2; f3] 2 g(V )0. Thus we have a Lie algebra g(V ). Depend-
ing on the choice of the bilinear form this is a generalization of the
orthogonal or the symplectic Lie algebra.

8. Appendix

Proof. of Lemma 2.4:
De�ne actions �i;j for 1 � i < j � n on M by

�i;j := ��1i ��1i+1 : : : �
�1
j�2�j�1�j�2 : : : �i+1�i (13)

Observe that �i;i+1 = �i. Since �i�j = �j�i if ji � jj � 2 a simple
calculation gives

�i;j�k = �k�i;j for all k < i� 1 and all k > j;
�i;j�i�1 = �i�1�i�1;j;

�i;j�k = �k�i;j for all i < k < j � 1;
�i;j�j�1 = �j�1�i;j�1 if i < j � 1 and
�i;j�j�1 = �i�i = �j�1�i;j if i = j � 1:

(14)

Let N � M be a kBn submodule of M . Assume furthermore that
� 2i �i+1 = �i+1�

2
i on N for all i = 1; : : : ; n�2. Then � 2i+1�i = � 3i = �i�

2
i+1:

Consequently we have

� 2j �i = �i�
2
j (15)

on N for all i; j = 1; : : : ; n� 1: Thus the � 2j commute with all ' 2 Bn

if they act on N .
We introduce the vector subspace M(�) �M(�) �M by

M(�) := fz 2M j81 � i < j � n : �2i;j(z) = �2zg

and show thatM(�) is invariant under the action of the �i and � 2i �i+1 =
�i+1�

2
i on M(�) for all i = 1; : : : ; n� 2.

For z 2 M(�) and i < j we have �2i;j�k(z) = �k�
2
i;j(z) = �2�k(z) for

all k with 1 � k < i � 1 and j < k � n by (14) and for all k with
i < k < j�1 by (14). Furthermore we have �2i;j�i�1(z) = �i�1�

2
i�1;j(z) =

�2�i�1(z) by (14), �2i;j�j�1(z) = �j�1�
2
i;j�1(z) = �2�j�1(z) (for i < j � 1)

by (14), and �2i;j�j�1(z) = �j�1�
2
i;j(z) = �2�j�1(z) (for i = j�1) by (14).

So there remain two cases to investigate for which we use �2i;j(z) = �2z

and symmetrically ��2i;j (z) = ��2z for all z 2M(�).
In the �rst case we get

�2i;j�i(z) = ��1i : : : � 2j�1 : : : �i�i(z) = ��1i : : : � 2j�1 : : : �i+1(�
2z)

= �2��1i : : : � 2j�1 : : : �i+1(z) = �2��1i �2i+1;j(z)
= �2��1i (�2z) = �2��1i � 2i (z) = �2�i(z)

for i+ 1 < j and �2i;i+1�i(z) = � 3i (z) = �2�i(z).
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In the second case we get

�2i;j�j(z) = ��1i : : : � 2j�1 : : : �i�j(z) = �2��1i : : : � 2j�1 : : : �i�j�
�2
j (z)

= �2��1j �j�
�1
i : : : � 2j�1 : : : �i�

�1
j (z) = �2��1j ��1i : : : �j�

2
j�1�

�1
j : : : �i(z)

= �2��1j ��1i : : : ��1j�1�
2
j �j�1 : : : �i(z) = �2��1j �i; j + 12(z)

= �2��1j (�2z) = �2�j(z):

Hence we have �i(z) 2M(�) for all z 2M(�) and all i = 1; : : : ; n�1.
The claim � 2i �i+1 = �i+1�

2
i is clear from the invariance and the fact,

that � 2i on M(�) is multiplication by �2.
Since the � 2i commute in their action on M(�) with all ' 2 Bn it is

clear that M(�) �M(�). �

We now study speci�c braids. The following identity

::: :::

::: :::

=

implies

��11 : : : ��1i�1�
2
i �i�1 : : : �1 = �i : : : �2�

2
1 �

�1
2 : : : ��1i (16)

and similarly �1 : : : �i�1� 2i �
�1
i�1 : : : �

�1
1 = ��1i : : : ��12 � 21 �2 : : : �i for all i =

1; : : : ; n.
Let Bn 3 ' 7! ~' 2 Sn denote the canonical epimorphism.
For each braid ' 2 Bn there exists a braid '(i) 2 Bn+1 such that the

diagram

P 
 : : :
 P 2 
 : : :
 P P 
 : : :
 P-
1 
 : : :
 f 
 : : :
 1

i

P 
 : : :
 P 2 
 : : :
 P P 
 : : :
 P-
1 
 : : :
 f 
 : : :
 1

j

?

'(i)

?

'

commutes for all f : P 2 �! P in C (where j = ~'(i)). The braid '(i) can
be given explicitly, but we are only interested in the following special
forms

�j(i) = �j+1 if j > i; �i�1(i) = �i�i�1;
�j(i) = �j if j < i� 1; �i(i) = �i�i+1
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which can be easily veri�ed.
By (16) we have for all z 2 P n+1(�1; �)

� 2i �i�1 : : : �1(z) = �i�1 : : : �1(z): (17)

Lemma 8.1. For z 2 P n+1(�1; �), ' 2 Bn and j := ~'(i) we have

'(i)�i�1 : : : �1(z) = �j�1 : : : �1(1 
 ')(z);
'(i)�i : : : �1(z) = �j : : : �1(1 
 ')(z):

Proof. To prove this we �rst observe that these two relations are com-
patible with the group structure of Bn. For ~' ~ (i) = ~'(j) = k we
have

'(j) (i)�i�1 : : : �1(z) = '(j)�j�1 : : : �1(1 
  )(z) = �k�1 : : : �1(1
 ' )(z);
'(j) (i)�i : : : �1(z) = '(j)�j : : : �1(1 
  )(z) = �k : : : �1(1
 ' )(z)

so we only have to show these relations for the generators ' = �j ,
j = 1; : : : ; n � 1. In these cases we have

�j(i)�i�1 : : : �1(z) = �j+1�i�1 : : : �1(z)
= �i�1 : : : �1�j+1(z)
= �i�1 : : : �1(1
 �j)(z) for j > i;

�j(i)�i�1 : : : �1(z) = �j�i�1 : : : �1(z)
= �i�1 : : : �j�j+1�j : : : �1(z)
= �i�1 : : : �j+1�j�j+1 : : : �1(z)
= �i�1 : : : �1�j+1(z)
= �i�1 : : : �1(1
 �j)(z) for j < i� 1;

�i�1(i)�i�1 : : : �1(z) = �i�i�1�i�1 : : : �1(z)
= �i�i�2 : : : �1(z)
= �i�2 : : : �1�i(z)
= �i�2 : : : �1(1
 �i�1)(z);

�i(i)�i�1 : : : �1(z) = �i�i+1�i�1 : : : �1(z)
= �i : : : �1�i+1(z)
= �i : : : �1(1
 �i)(z);
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�j(i)�i : : : �1(z) = �j+1�i : : : �1(z)
= �i : : : �1�j+1(z)
= �i : : : �1(1 
 �j)(z) for j > i;

�j(i)�i : : : �1(z) = �j�i : : : �1(z)
= �i : : : �j�j+1�j : : : �1(z)
= �i : : : �j+1�j�j+1 : : : �1(z)
= �i : : : �1�j+1(z)
= �i : : : �1(1 
 �j)(z) for j < i� 1;

�i�1(i)�i�1 : : : �1(z) = �i�i�1�i�i�1�i�2 : : : �1(z)
= �i�1�i�

2
i�1�i�2 : : : �1(z)

= �i�1�i�i�2 : : : �1(z)
= �i�1�i�2 : : : �1�i(z)
= �i�1 : : : �1(1 
 �i�1)(z);

�i(i)�i : : : �1(z) = �i�i+1�i : : : �1(z)
= �i+1�i�i+1 : : : �1(z)
= �i+1�i : : : �1�i+1(z)
= �i+1 : : : �1(1 
 �i)(z)

where we used (17) in the 3. and 7. equations. �

Lemma 8.2. For all z 2 P n+1(�1; �) and all f : P 2 �! P we have

(P i�1 
 f 
 P n�i)�i�1 : : : �1(z) 2 P
n(�):

Proof. For all ' 2 Bn and all k = 1; : : : ; n we have

� 2k' (P i�1 
 f 
 P n�i)�i�1 : : : �1(z) =
= � 2k (P

j�1 
 f 
 P n�j)'(i)�j�1 : : : �1(z)
= (P j�1 
 f 
 P n�j )� 2k(j)�j�1 : : : �1(1
 ')(z)

= (P j�1 
 f 
 P n�j )�j�1 : : : �1(1
 � 2k')(z)
= '(P i�1 
 f 
 P n�i)�i�1 : : : �1(z)

hence (P i�1 
 f 
 P n�i)�i�1 : : : �1(z) 2 P n(�): �

Now we can give the

Proof. of Proposition 3.1:
We �rst show that P n+1(�) � P
(P n(�)) � P n+1. Let z =

P
k zk;1


: : :
zk;n+1 be in P n+1(�) with linearly independent zk;1. Let '; �i 2 Bn

be given. De�ne 1
 ' 2 Bn+1 resp. 1
 �i 2 Bn+1 by the operation of

' resp. �i on the factors zk;2
 : : :
 zk;n+1, e.g. 1
 �
(n)
i = �

(n+1)
i+1 . Then

P
zk;1 
 '�1� 2i '(

P
zk;2 
 : : :
 zk;n+1) = (1 
 '�1� 2i ')(z)

=
P

k zk;1 
 �2
P
zk;2 
 : : :
 zk;n+1:

Since the zk;1 are linearly independent, the terms
P
zk;2 
 : : :
 zk;n+1

are in P n(�) hence z 2 P 
 P n(�).
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Now we show that a factorization as given in the following diagram
exists

P n+1(�) P 
 P n(�)-�

P 2(�1) P 
 P:-�?

1
 [.,.]

?

1
 [.,.]

The morphism 1
[:; :] : P
P n(�) �! P
P is in C. Consider the braid-
ing � : P 
 P n(�) �! P n(�) 
 P . Since it is a natural transformation
the diagram

P 
 P n(�) P n(�)
 P-�

P 
 (P 
 : : :
 P ) (P 
 : : :
 P ) 
 P-
'? ?

commutes with ' = �n : : : �1 = �(P;Pn), so � (
P

k zk;1 
 (
P
zk;2 
 : : : 


zk;n+1)) = �n : : : �1(
P

k zk;1 
 zk;2 
 : : :
 zk;n+1). Hence we get

� (1
 [:; :])(z) = ([:; :]
 1)�n : : : �1(z) (18)

and similarly

� ([:; :]
 1)(z) = (1 
 [:; :])�1 : : : �n(z) (19)

for z 2 P n+1(�). This implies � 2(1
 [:; :])(z) = � ([:; :]
1)�n : : : �1(z) =
(1 
 [:; :])�1 : : : �n�n : : : �1(z) = (1 
 [:; :])�2n(z) = (�1)2(1 
 [:; :])(z),
so that (1 
 [:; :])(z) is in P 2(�1) and thus

P
[zk;1; [zk;2; : : : ; zk;n+1]] is

de�ned.
The second claim of the Proposition is proved in a symmetric way.

�

We continue with the

Proof. of Proposition 3.2:
We use (18), (19), and (16) to get

� 2(1
 [:; :]n)(z) =
= (1 
 [:; :]n)�1 : : : �n�n : : : �1(z)
= (1 
 [:; :]n)�1 : : : �n�1� 2n�

�1
n�1 : : : �

�1
1 �1 : : : �n�1�n�1 : : : �1(z)

= (1 
 [:; :]n)�n : : : �2� 21 �
�1
2 : : : ��1n �1 : : : �n�2�

2
n�1�n�2 : : : �1(z)

= (1 
 [:; :]n)(�n : : : �2� 21 �
�1
2 : : : ��1n )(�n�1 : : : �2� 21 �

�1
2 : : : ��1n�1) : : : (�

2
1 )(z)

= (1 
 [:; :]n)(z)

for all z 2 P n+1(�1; �) hence (1
[:; :]n)(z) is in P 2(�1) and [:; [:; :]n]2(z)
is de�ned.



24 BODO PAREIGIS

Now we prove that [:; [:; :]2; :]n�i�1 : : : �1 : P n+1(�1; �) 3 x
y1
 : : :

yn 7! [y1; : : : ; [x; yi]; : : : ; yn] 2 P is well de�ned. Let z 2 P n+1(�1; �).
Then we have � 21 �

�1
2 : : : ��1i (z) = ��12 : : : ��1i (z) since ��12 : : : ��1i = 1


��11 : : : ��1i�1. If we represent y = ��12 : : : ��1i (z) =
P
ai
 bi 2 P 2
P n�1

in shortest form, then the set fbig is linearly independent, so
P
ai
bi =

� 21 (
P
ai
bi) =

P
� 21 (ai)
bi, hence �

2
1 (ai) = ai and y 2 P 2(�1)
P n�1.

So we get �i�1 : : : �1�i : : : �2(y) = �i�1 : : : �1(z) 2 P i�1 
 P 2(�1)
 P n�i

and (1
 : : :
 [:; :]
 : : :
 1)�i�1 : : : �1(z) 2 P n is de�ned.
By Lemma 8.2 we have (1
 : : :
 [:; :]2
 : : :
 1)(z) 2 P n(�), so that

[:; [:; :]2; :]n�i�1 : : : �1(z) is well de�ned. �
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