Complements and the Krull-Schmidt Theorem in Arbitrary Categories
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Abstract. We study direct product decompositions of objects in a finitely complete and cocom-
plete category with zero object and certain axioms for a coimage factorization of morphisms.
Direct products C' = A x B can be characterized by ”inner” properties of C' and its subobjects A
and B. We also show that the Fitting Lemma and the Krull-Schmidt Theorem hold.
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1 Introduction

Let C be a category with finite limits, finite colimits, and a 0-object such that the
following axioms are satisfied:

(I) for every morphism f : A — B, the induced (and uniquely determined)
morphism ¢ in the commutative diagram

A4 L ATIB2—B

is a difference cokernel;

(I1) if, in the commutative diagram

N

B

[ is a difference cokernel and g has kernel 0 then ¢ is an isomorphism.
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Axiom I guarantees that A X B is the "span” of the subobjects g(A) and g(B).
In the category of sets A[[B = AUB is too small for this purpose, but in the
presence of algebraic structures very often A[] B will become large enough. If f
is the zero morphism, then we shall use the notation AU B = A X B to denote
that A x B is spanned by A and B.

As we shall see later on axiom I has the consequence that certain morphisms
in C can be added. Axiom II means that C is in some sense balanced (cf. a mono-
and epimorphism is an isomorphism).

Two fundamental examples are Gr the category of groups and Mo the category
of monoids. Gr satisfies (1) and (II) as will be seen soon in more general contexts,
whereas Mo does not satisfy any of (I) or (II). A counterexample for (1) is A =
B = (Ng,+) and f =1id. It is easy to see that (1,0) ¢ Im(g), and ¢ is surjective if
and only if ¢ is a difference cokernel. To give a counterexample for (II) adjoin an
additional element oo to (N, +) such that n+o00 = co4+n =n+1 and co+o00 = 2.
Then NqU{oo} is a monoid and f : NgU{oo} — Ny with f(n) = n and f(oo) =1
is surjective (a difference cokernel) with kernel 0. But f is not bijective.

To find a larger class of categories C which satisfy the hypotheses, let us consider
an (equationally defined) algebraic category C. The final object E is always the
set with one element with the unique algebra structure on it. In order to be a
0-object in C it is necessary and sufficient that, for any algebra A in C, there is
a unique algebra morphism F —— A; this means that there must be precisely
one O-ary operation in the theory for C (and it must be compatible with all other
operations on A in the obvious sense). Let us call the distinguished element 0 for
every algebra A. Assume that there is an m-ary operation w: A X ... x A — A
for some m > 2 and ¢ < m, such that for every algebra A

1.Va€e A:w(0,...,a,...,0) =a (ais in the i-th place),
2. Va,a' € Aday,...,a, € Atw(ay,...,d,... ;ay) =a (¢ is in the i-th place).

Then axiom I is satisfied. To prove this let f: A — B be an algebra morphism
and let (a,b) € Ax B be given. By definition of g we have gja(a) = (a, f(a)) € AX
B and gjp(b) = (0,b) € Ax B. Pick by, ..., b, such that w(by,..., f(a),...,b,) =
b7 then g(w(jB(bl)v . '7jA(a)7 . 7]B(bm))) = w((ov b1)7 e (a7 f(a))v LR (07 bm)) =
(wa(0,...,a,...,0),wp(by,..., f(a),...,bn)) = (a,b). Thus ¢ is surjective which
in an algebraic category means the same as ¢ is a difference cokernel ([2], 3.4 Cor.
4).
If there is a binary operation v such that v(a,b) = 0 if and only if @ = b, then
C also satisfies (II). To prove this let ¢ : B — C have kernel zero then ¢(b) =
g(t') = 0=v(g(b),g(t))) = g(v(b,V)) = v(b,l/) =0 =b=1"V, hence g is injective.
However, in an algebraic category a bijective morphism is an isomorphism.

In particular all algebraic categories where the objects have an underlying group
structure and no further distinguished elements satisfy our conditions for C, e.g.
rings (without unit elements), associative rings, Lie rings etc. The binary operation
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v can be chosen to be v(a,b) = a — b. Similarly the category of loops ("non-
associative” groups) satisfy the conditions for C.

We will show that certain generalizations of the Fitting Lemma and the Krull-
Schmidt Theorem hold in our categories. Instead of considering congruence rela-
tions as in [3] or a modular lattice of subobjects as in [1] we use specific subobjects
together with certain endomorphisms to prove these theorems.

2 Complements and internal direct products

Let C satisfy the axioms discussed in section 1. We are interested in the question,
whether inside an object A X B in C there can be other "subobjects” X of A x B
such that X x B = A x B. For this we have to make precise what the equality
means and how A and B are subobjects of A x B. A subobject will be used
in the sense of [2], that is as a representative of the usual equivalence class of
monomorphisms.

In the following definition ps : A x B — A (resp. pp : A X B — B) denotes
the canonical projection.

Definition 2.1 1. A subobject 1x : X < A x B is called a weak complement of
B, if the morphism X =5 A x B 2% A has kernel 0 — X,

2. A subobject tx : X — A x B is called a complement of B, if the morphism
X 255 A x B X4 Ads an isomorphism.

3. U is called internal direct product of the subobjects A — U and B — U if

a) A— U and B — U are kernels,
b) the intersection of A and Bis AN B =0,

¢) the canonical morphism A[[B — U is a difference cokernel (a fact
which we abbreviate by AU B = U).

Let A and B be objects in C. We consider B as a subobject of A x B via the
canonical morphism 7g : B — A X B induced by id : B— B and 0: B — A.

Lemma 2.2 B 2 A x B 22 A is a kernel diagram.
Proof: If g: X — A X B is given with pyg = 0 then pyg = patgpsg = 0 and

peY = prlppryg implies ¢ = tgpgy, a factorization of g through 75. Since 7p is a
section this factorization is unique. O

Proposition 2.3 1x : X — A x B is a weak complement of B if and only if
XNB=0.
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Proof: Let X be a weak complement of B. In the commutative diagram

XNB—~+B
8 S Y
0 X X+~ Ax B A,

with up and ux the canonical morphisms, we have pytxux = 0 hence there is a
factorization v of uy through 0 by the property of weak complements. Since uy
is a zero-morphism and a monomorphism we get X N B = 0.

Let X N B =0. In the commutative diagram

Ke(f)

BN
B2 Ax B2

B 22y Ax B X2 Ajis a kernel diagram by Lemma 2.2. Hence A can be constructed
uniquely from g such that 7gh = txg. Now ¢ can be factored through 0 and thus
must be zero. This means that X is a weak complement of B. O

Proposition 2.4 Leti1x : X < AX B be a subobject. The following are equivalent:
1. X is a complement of B.

2. There is a unique morphism f : A — B and an epimorphism g : A — X

such that the diagram
A
o
id X I
A

ATAXB?B

commutes.

3. The induced morphism h in the commutative diagram

X2 _xyp-teE.p

| x

Ax B ) id

|ra

A2 _AxB-—.+B
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is an isomorphism.

Proof: (1) < (2): patx is an isomorphism if and only if there is an epimorphism

g with (patx)g =id. Thus f can be constructed uniquely such that f = ppixg.
(1) = (3): If paex is an isomorphism then, obviously, h is an isomorphism.
(3) = (1): Let h be an isomorphism. In the commutative diagram

A—2+ Ax B
pxh=7a | |t
X2 _XxB

o

Ax B h
PAl
A2 _AxB

we have paiy = id. Hence (A — X — A) = id in the above diagram. Thus
it suffices to show that pstx is a monomorphism. Suppose that paix f = patxyg.
Then we have the commutative diagram

pPALx h id

A2 _ AxB-2+B

Define f@nd g by the universal property of the product X x B. Then pAhf: pahg
and pghf =0 = pghg and hence hf = hg and f = § since h is an isomorphism.
So f =g and pyy is a monomorphism. O

Remark 2.5 1) In some sense 2.4, (3), means that A X B is generated by the
subobjects X and B. Observe, however, that there is also a canonical morphism
XTI B — Ax B which, in general, does not factor through X x B in the canonical
way (e.g. Gr) nor is it an epimorphism (e.g. commutative monoids).

2) In 2.4, (2), one can consider X as the graph of the morphism f: A — B.
So this part of Proposition 2.4 may be rephrased as:

there is a bijection between the complements of B in A X B and the morphisms
f:A— B. N

To show that each f determines a subobject X of AX B, let f: A — AX B be
the morphism with psf =id and pgf = f. Then (A, f) is a subobject of A X B,
namely the graph of f.
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Proposition 2.6 Let 1x : X — A X B be a complement of B. Then we have
XNB=0and XUB=AXB.

Proof:  Since a complement is a weak complement we get X N B = 0 by
Proposition 2.3. In the commutative diagram

A—+A][B~——B

IR
IR
I

XX, X[[B—B

= tx =

A2 _Ax B2+ B

the morphism A[[B — A X B is a difference cokernel by axiom (l) and so is
XIIB— Ax B. Hence XUB=AXx B. O

Theorem 2.7 1. A X B is an internal direct product of the subobjects A and B.

2. If A and B are subobjects of U such that U is an internal direct product of A
and B, then there is an isomorphism U = A x B such that

U

7 ™~

A = B

\\\\ x///

Ax B

commutes.

Proof: (1) Since paT4 = id is an isomorphism, A is a complement of B in
A x B. Thus by Lemma 2.2 and Proposition 2.6 we get that A X B is an internal
direct product of A and B.

(2) Given an internal direct product U of A and B. Let U — X be the
cokernel of A — U. Then A — U is the kernel of U — X since it was a kernel.
In the commutative diagram

Ke(f)

N

)g—
A

I
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the morphism Ke(f) — A and Ke(f) — 0 exist since A — U is the kernel of
U— X and 0 = AN B is a pull-back. Hence Ke(f) =0. Now let

P—9>U

|, |

B—1+x

be a pull-back and consider the commutative diagrams

B

e, \

id P—»U -9 4

|

B—>X B—>X

They induce the canonical morphism AJ[ B — P — U, which is a difference
cokernel. Since Ke(f) = 0 the diagram

Ke(g)

commutes and the canonical morphism Ke(g) — P is the zero morphism. By
axiom (lI) ¢ is an isomorphism. Thus we can replace P by U and ¢ by id so that

there is a factorization U — B —— X of U — X, which is the cokernel of
A—U.

Since (A — U — X) = 0 and Ke(f) = 0 we get (A — U — B) =0
and hence a factorization (U — X — B) = (U — B). Since U — X is
the cokernel of A — U we get (X — B L X) =1id. Now f has kernel zero

and is a difference cokernel of (B Ly x — B,B % B). Hence by axiom
(I1) we obtain that f : B — X is an isomorphism. Therefore we may replace
X by B and consider U — B as cokernel of A — U. Furthermore we have
(B — U — B) =id by diagram (). Analogously we get a morphism U — A,
which is a cokernel of B — U, such that (A — U — A) =id.
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Now we prove U 2 AXx B. Let Y be the kernel of A in the following commutative
diagram

A Y B

A+-——AXB—B
To prove the existence of ¥ — A observe that A — U is the kernel of U — B
and that (Y — U — B) = (Y — U — A x B — B) = 0. Thus we get a

commutative diagram

0—A

|

B——U
as AN B = 0. This shows that (Y — U) = 0. Thus h : U — A X B has kernel
0. On the other hand we have a commutative diagram

Al B

Y

A+~——AXB——8B
which implies by axiom (1) that A[[ B — U — A X B is a difference cokernel.

By axiom (II) A is an isomorphism and the above diagram proves that the diagram
in the theorem commutes. O

3 Summable morphisms

In this paragraph we shall introduce an addition of certain morphisms. One of the
aims is the proof of a formula id =7,p4 +7ppp for A x B. Let C be as in sections
1 and 2.
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Definition 3.1 Let 0 : A]JA — A x A be the canonical morphism defined by
the commutative diagram

AT L AT[A 2 A

id id
0 0
o

By axiom (I) o is a difference cokernel. Let f,¢g € C(A, B). f and ¢ are called
summable if the canonical morphism h of

A— - AJJA——A

M~ T

B

factors (necessarily uniquely) through o. The factorization morphism Ax A — B
will be written as (f, g).

A similar definition can be given for n morphisms. The family (f;|i=1,...,n)
is summable if for all 4,5 with 1 < ¢ < j < n the morphism induced by the
fis fiz1s .-, fj factors through [],_, A — TTi.; A. The factorization is denoted
by <fi7fi+17---7fj> tAX...x A— B.

If (fil]i = 1,...,n) is summable then the sum fi + ...+ f, is defined as the

morphism A AN A x A g

Lemma 3.2 Let f; € C(A,B), i =1,...,n, h € C(B,C) and k € C(D,A). Let
(filt=1,...,n) be summable. Then (fikli =1,...,n) and (hfili =1,...,n) are
summable and we have h(fi + ...+ fu) =hfi+ ...+ hf, and (fi+ ...+ fu)k =

Proof: It is sufficient to prove that factorizations (hfi,...,hf,) resp.
(fik,..., f.k) exist. Observe that the factorization (fi,..., f,) is the only mor-
phism which makes all the diagrams

L

A

An

L Ueta)

commute. Thus the diagrams

A
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commute with (hfy,...,hf,) = h{fi,..., [y and hfi + ...+ hf, = g = h(fi +

...+ fu). The second part follows from the commutative diagrams

D—Y +pr+—2"__p

Lemma 3.3 Sums of summable morphisms satisfy the associative law. In partic-
ular if (fi, fo, f3) € C(A, B)® is summable then (fi + o) + fs = fi+ fo+ [5 =
i+ (ot fo)

Proof:  We prove only the second statement. The first follows by standard
reasoning. Consider the following commutative diagram

A

\\\\\\\\\\\\\\\\\\4Q\\\\\\\\\\\\*. Axid 7

L3 Y
AR~ AXA—" > AXx AX A
(f1,f2,f3

B

where the composite vertical morphism denotes (f, + f2) 4 f3 (and also fi+ fo+ f5
in case the diagram commutes). The morphisms 7* are morphisms into A* and
into A®. The only commutativity which is not immediately clear is {f1, fo, f3>2?71 =
(f1, f2), but we have <f17f27f3>z?,1z% = <f17f27f3>z? =h= <f17f2>z% and similarly

(f1, f2, [3)T3 175 = (f1, f2)75. By the uniqueness of the factorization (fi, f2) we get
the required commutativity. O

Lemma 3.4 For each morphism f € C(A, B) the morphisms 0 and f are summable
and we have 0+ f= f = f+0.

krs.tex - Date: June 23, 1994 Time: 10:45



Krull-Schmidt Theorem 11

Proof: 1t is sufficient to prove 0+id = id for then 04+ f = 0f+id f = (04id) f =
id f = f by Lemma 3.2. But the factorization (0,id) is ps : A X A — A since

A— > AxA~—=—4

commutes by definition of 7; and 7. Hence 0+ id = (0,id)A = p,A = id. O

Proposition 3.5 Let U = A x ... x A,. Thenidy =T ip1 + ...+ ,pn.

Proof: To begin the proof by induction assume U = A x B. The diagram

12 12
U——UxU~—"—U
pa PAXPB PB

A Ax B=U<2A

commutes, whence py X pg = (Tapa,ippp) and idy = (pa X pg)A =Tapa + ipps-
To indicate the induction step assume V = A x B x C' = U x C. Then idy =

lopr + tepe = widy py + tepe = w@Gph + H5p%)pr + Tope = wihpipr +
i pLpy + lepe = tapPa + LPB + lope- O

Example 3.6 We want to prove in the case C = Gr, the category of groups, that
two morphisms f,g : A — B are summable if and only if f(z)g(y) = g(y)f(z)
Jor all w,y € A, Given (f,g) we have (f,g)(x,y) = (f,9)((x,€) - (e,y)) =
(frg)(z,e)- (f,9)(e,y) = f(z)-gly). Since (z,e) and (e,y) commute we get
f(2)gly) = gly)f(z). Conversely it is a well-known exercise that this condi-
tion implies that (f,g) is a homomorphism. The sum f + ¢ is then defined by

(f +9)(x) = fz)g().

4 Tdempotent morphisms and the Fitting Lemma

First we need some facts about coimages. The coimage of f: A — B is defined
as the difference cokernel of the kernel pair of f ([2] p.70, Lemma 4a)). In the

canonical factorization A < Coim(f) —— B of f,  fails to be a monomorphism
in general.
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Lemma 4.1 Given f: A — B and g: B — (', then there is a unique morphism
k: Coim(gf) — Coim(g) such that
f

A B—2—(C

Coim(g f) 5 Coim(g)

commutes. If f is an isomorphism then so is k.

Proof: This is an easy exercise in universal properties of difference cokernels
and kernel pairs. O

One proves just as easily

Lemma 4.2 Given g : A — B and f : B — C, there is a unique morphism
k : Coim(g) — Coim(fg) such that

A—1—pB

C

Coim(g) k Coim(fg)

commutes. If f is an isomorphism then so is k.

Definition 4.3 Let f: A — A be idempotent. We say that f satisfies condition
(Gy) if the canonical morphism Ke(f)[[Coim(f) — A is a difference cokernel
and Coim(f) — A is a kernel.

In the category of groups Gr the first condition is always satisfied, indeed
ar af(a)x f(a) € Ke(f) I Coim(f) is a section for the given morphism. The
second condition is in Gr equivalent to f being normal (see 4.7). In Mo, the
category of monoids, let M = (Z/37)* be the multiplicative monoid of Z/37 and
f: M — M be given by f(0) =0, f(1) = f(2) = 1. Then f is idempotent and
Ke(f) LI Coim(f) — M is surjective. But Coim(f) — M fails to be a kernel.
To see this observe that Coim(f) = {0,1} and the kokernel of Coim(f) — M is
M — {1}. The kernel of this morphism is id : M —s M, but not Coim(f) —
M.

Now let C be again as in section 1.

Lemma 4.4 Let f : A — A be idempotent with (G;). Then A = Ke(f) x
Coim(f).
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Proof: Ke(f) — A and Coim(f) — A are kernels. Furthermore (G¢) implies
A = Ke(f) U Coim(f). Next we show Ke(f) N Coim(f) = 0. In the diagram

A~ Coim(f) ——

A

we have ¢f' = [ = f? = fuf" hence ¢ = fu, since f’ is an epimorphism. In the
commutative diagram

Ke(f) N Coim(f) —— Ke(/)

Coim(f) : A—L 4

we have ¢j = fij = 0 hence Ke(f) N Coim(f) = 0. Hence Theorem 2.7 finishes the
proof. O

Let f: A — A be an endomorphism. Then f has a factorization A f—l>
Coim(f) — A. By Lemma 4.1 there is also a canonical morphism
ty : Coim(f") — Coim(f"~') and by Lemma 4.2 there is a canonical morphism

fl s Coim(f*~1) — Coim(f").

Definition 4.5 An endomorphism f: A — A is called bounded, if the families
(¢ : Coim(f™) — Coim(f™~1)) and (f), : Coim(f"~*) — Coim(f")) become sta-
tionary (i.e. there is ng such that for all n > ng both ¢, and f, are isomorphisms),
and if for each n there is r > n such that Ke(f") [[ Coim(f") — A is a difference
cokernel and Coim(f") — A is a kernel.

Proposition 4.6 (Fitting Lemma) Let f : A — A be bounded. Then for every
ng € N there is an n > ngy such that

A =Ke(f") x Coim(f").

Proof: The chains (¢,) and (f!) become stationary for all n > ng. In particular
we have an inverse (f,)~" of (f/¢,)". The morphism

¢: A — Coim(f") Untnl”” Coim(f") — A
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is idempotent which follows from the commutative diagram

A L A
ey () (o .
Coim(f?) ——=——— Coim(f") id
id
A - A A
Coim(f™) R Coim(f™)
A Iz A

in which ¢* : A — A is easily identified. The diagonal Coim(f") — Coim(f")
is the identity and gives a commutative lower triangle since A — Coim(f") is an
epimorphism. Thus A —s Coim(f") — Coim(f") -% Coim(f") — A in the
diagram is ¢.

The only remaining problem is the commutativity of the rectangles. It follows
from the diagram

Coin:l(f”) Coim(f") ~— Coim (') <—— Coim (/™)
AL ! A

where the left part is an (n — 1)-fold repetition of the right part and the right part
commutes by Lemma 4.1 and Lemma 4.2 with ¢ = f7~L.
For suitably large n we have also Coim(f") — A a kernel. Define ¢’ := (A —

Coim(f") (ntnl”" Coim(f")). Since (fit,)”" is an isomorphism, we have that

¢+ A — Coim( f") is a coimage of f" as well as of p = (A4 LN Coim(f") — A).
Thus Coim(yp) — A is a kernel and Ke(yp) = Ke(A — Coim(yp)) = Ke(A —
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Coim(f")) = Ke(f™). Since f is bounded, ¢ satisfies (G,) and Lemma 4.4 holds
for . Translated back into terms of f gives the required result. O

Example 4.7 Consider the category of groups Gr. A morphism [ : G — G
is called normal if f(aba™) = af(b)a™" for all a,b € G. If f is normal and G
has a.c.c. and d.c.c. then for all n we have f"(aba™') = af"(b)a™' and thus
Coim(f") = Im(f™) normal in G. The chains of subgroups Ke(f") C Ke(f"+)
and Im(f") 2 Im(f**') become stationary. Finally a — a(fle,)" f"(a™) *
(flen)~ " (a) is a section for the canonical map Ke(f™) [[Im(f") — G. Thus f
is bounded and the Fitting Lemma holds.

5 The Krull-Schmidt-Theorem

Definition 5.1 Let A # 0 be in C. We call A indecomposableif A = X XY implies
X=0o0orY =0.

Lemma 5.2 Let A be indecomposable and f: A — A a bounded endomorphism.
Then f is either nilpotent or an automorphism.

Proof: By the Fitting Lemma there is an n € N such that A = Ke(f") x
Coim(f"). If Coim(f") = 0 then f* = 0 and f is nilpotent. If Ke(f") = 0
then Coim(f") — A must be the identity. Hence f* : A — A has kernel zero
and is a difference cokernel. By axiom (II) for C we get that f* and also f are
automorphisms. O

Definition 5.3 Given A = B x . We define the subset X C End(B) of A-
productive endomorphisms as follows:

I.f A=B x(C'"then (B— A —B — A— B)€ X.
2. If f,g € X, then fg € X.

3.If f € XN Aut(B), then f~ € X.

4. If f,g € X are summable then f+ g € X.

5. X = the smallest set satisfying (1),..., (4).

Definition 5.4 A is bounded if for all A = B x (' all A-productive endomorphisms
f are bounded.

Lemma 5.5 Let B be indecomposable and A = B x C' be bounded. Let f,g be
A-productive and summable. If f and g are nilpotent, then so is f + g¢.
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Proof: ~ Without loss of generality we assume f # 0 # g. Since f 4 g is
A-productive it is bounded. By Lemma 5.2 f + g is either nilpotent or an auto-
morphism. Assume f+ g € Aut(B). Then h = (f + ¢g)~! is A-productive and so
are hf and hg. Thusid = h(f+¢g) = hf+hg with hf and hg A-productive, hence
bounded. Since f is nilpotent, there is an n such that f* £ 0 and f- f* = 0. So f”
factors through Ke(f) — B and we get Ke(f) # 0. This implies that Ke(hf) #0
and thus A f is not an automorphism. By Lemma 5.2 A f is then nilpotent. Replac-
ing f by hf and g by hg we can assume without loss of generality that f and ¢
are summable, A-productive and nilpotent with id = f + ¢.

Let f* = 0 = g". We prove by induction on k that f'*gf'2¢g...gf"* = 0 for
t; > 0and Yi_, t; = n. For k = 1 this is trivial. Using Lemma 3.2 and Lemma
3.4 the induction step is firg...q [+ = flrg...gftcffixrr 4 flrg.. . gfthgfis+ =
g .gft*(f+ g)ftx+ = forg. . gf f*+ = 0. With this remark we get (f +
¢)** = 0 since in the expansion each summand contains at least n factors f or n
factors g, so it is zero. Thus f + ¢ = id cannot hold with B # 0. ad

Corollary 5.6 Let A = B xC be bounded and B be indecomposable. Let fi, ..., [,
€ End(B) be summable and A-productive. If fi + ...+ f, =id then one of the f;

is an automorphism.

Proof: If all f; are nilpotent then a simple induction proof shows that f; +
...=+ f, is nilpotent. So one of the f; cannot be nilpotent, and hence it must be
an automorphism. O

Theorem 5.7 (Krull-Schmidt) Let
A=A x...xA, =B x...xB,

be two decompositions of A into internal direct products of indecomposable subob-
jects A; resp. B;. Let A be bounded. Then m = n and A; = B; for all i and a
suitable reordering of the B;s.

Proof: 'We prove the following statement by induction for ¢ < min(m,n).
P(t): there is a reordering of By,..., B, such that 4; 2 B; for : = 1,...,t and
A=A X ... X Ay X Byyy X ... X By.

P(0) holds by hypothesis. Assume that P(t — 1) holds. Then A = A; x ... X
Ay X By X ... x B, with suitable indexing and A; = B; for 1 < ¢ <1t — 1. Let
p; and ¢, be the corresponding projections resp. injections. Furthermore we have
A= A X ...x A, with the projections p; and the injections ¢;. Observe that
(=1t fori=1,...,t—1, and that we use the same subobjects A,,..., A;_;, but
the projections may be different. By Proposition 3.5 we have id = ¢|p| +.. .4+, p,.
Since pyt; = pt; = 0for 1 <1 <t — 1 by definition of the injections, we get

ida, =prty = prid e, = PtL/1P/1Lt + ...+ ptL;Lp;LLt = Ptbipibt +...+ PtL;LP;LLt-
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By the Corollary 5.6 one of the p,¢pie, must be an automorphism. After reindexing
we may assume that pgjpie, is an automorphism of A,. Since (puipie) ™ =
pety (Pitepety) Phie is also an automorphism, we get (pie:pety)” # 0, hence plup.i) is
also an automorphism due to Lemma 5.2. Thus pi¢, : A, — B, is an isomorphism.

It remains to show that A = A; x ... X Ay X Byy1 X ... x B,. We have A =
B x (A1 X ... XA 1 X By X . X Bp). Let X = A x...X A X By X ... X By,
as subobject of A. Then A, is a complement for X in 4 = B; x X since pjs; :
Ay, — A — B, is an isomorphism. By Proposition 2.6 we get A, N X = 0 and
A, UX = A. Furthermore A, — A and X — A are kernels. Hence A is an
internal direct product A = A, x X of A, and X. O
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