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This paper is motivated by the theory of sequential dynamical systems, developed
as a basis for a theory of computer simulation. We study finite dynamical systems
on binary strings, that is, iterates of functions from �0� 1�n to itself. We introduce
several equivalence relations on systems and study the resulting equivalence classes.
The case of two-dimensional systems is studied in detail. © 2001 Academic Press

INTRODUCTION

The topic of this paper is the study of functions

f � kn → kn�

and their iterates, where k = �0� 1�, and kn is the n-fold Cartesian product
of k. We view such functions as finite dynamical systems on the set of binary

1 This paper was written while the second author was visiting the Department of Mathe-
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all colleagues for their support and hospitality. The work of the first author was partially
supported by funds from a partnership initiative between NMSU and Los Alamos National
Laboratory.
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strings of a given length and call them systems. Our motivation comes from
an interest in their role in computer simulations. During the last several
years an effort to establish a rigorous mathematical foundation for com-
puter simulation has been under way (detailed in [2–4]), and the results
presented here can be considered a part of this effort. But finite dynamical
systems are of considerable interest in their own right and deserve further
study.
To motivate the setting of the present paper, we describe the main con-

cept introduced in [3], that of a sequential dynamical system. Computer
simulations typically comprise entities having state values and local rules
governing state transitions, a spatial environment in which the entities act
or interact, and some method with which to trigger and update the state
of each entity, according to a specified update schedule. The result is what
one calls a “simulated system.”
As an example, consider a simulation of road traffic. Here the entities

might represent cars, whose state is either stop (0) or go (1). The state space
of the simulation then consists of tuples of binary strings, whose length is
equal to the number of entities involved in the simulation, and represents
the state of each entity at a given time. A state transition of the simulation
is the replacement of one state by another. Each entity has an internal
function attached to it, which computes its state at any given time, that is,
a local rule for state transitions. The entities interact with each other by
passing information back and forth, representing the interaction of cars on
the road. This interaction takes place in a spatial environment that may
correspond to the road network to be modeled or to causal relationships
among the cars on it. Dependencies among the entities determine an order
in which the states of the individual entities are recomputed in a state
transition, the update schedule. For instance, as cars approach a traffic
jam, those arriving first should come to a stop before cars following them.
Finally, the interaction of entities is local, that is, entities interact only with
those entities that are adjacent to them, as defined by the underlying spatial
environment, just as cars interact only with other cars that are close to them
on the road.
A mathematical abstraction of such simulated systems must then be made

up of these essential elements: local rules governing state transitions, a
framework for interaction represented as an interaction support structure,
and an update schedule of the entities. These elements are incorporated
into a mathematical structure called a sequential dynamical system (SDS),
comprising a graph, whose vertices correspond to the entities and whose
edges represent the causal dependency among the local update maps; a
collection of local update functions; and an update schedule. Entities are
adjacent if and only if they interact. The update schedule reflects causal
or temporal dependencies among entity states. Locality, a property of the
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update maps, is defined in terms of adjacency, a property of the support
and causal structure. The resulting interplay between the topological and
algebraic properties of SDS is very rich and interesting and seems to open
new areas of purely mathematical investigation.
Following is the precise definition of an SDS.

Definition 0.1. Let Y be a loop-free labeled graph with vertex set
�v1� � � � � vn�, and let k be the field with two elements, denoted 0 and 1.
(Consider kn as the state space over �v1� � � � � vn�.) For each i ∈ �1� � � � � n�
suppose we are given a function

f i� kn −→ kn�

which changes only the value of the ith coordinate and depends only on
the values in the ith coordinate and the values in those coordinates corre-
sponding to the vertices adjacent to vi in the graph Y . Call such a function
a 1-local function on kn, with respect to the graph Y . Furthermore, we
assume that f i is symmetric in its inputs, that is, it is invariant under per-
mutation of its inputs. To be precise, let vi1� � � � � vir be the vertices adjacent
to vi. Then the function f i factors through the projection

kn −→ kr+1�

given by

	x1� � � � � xn
 �→ 	xi1� � � � � xi� � � � � xir 
�
Now let π ∈ Sn be a permutation of the subscripts �1� � � � � n�. We compose
the functions f i in the order prescribed by π to obtain a function

f 	Y�π
 = fπ	n
 ◦ fπ	n−1
 ◦ · · · ◦ fπ	1
� kn −→ kn�

We call the function f 	Y�π
 the sequential dynamical system (SDS) deter-
mined by Y , the local functions f i, and the permutation π ∈ Sn. The
graph Y is the dependency graph, and the permutation π is the update
schedule.

The assumption that the local update functions f i are symmetric in their
inputs is motivated by the desire for a good theory of SDS and facilitates
the proof of some key results. From the point of view of applications to
simulation it is quite restrictive. For instance, it prevents parallel cellular
automata from being modeled as an SDS.
One of the goals of this paper is to clarify the relationship between local

functions on kn and the graph Y . For this purpose we disregard the added
structure provided by the update schedule and study n-tuples of functions

	f 1� � � � � f n
�
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where f i� kn −→ kn changes only the value of the ith coordinate. We also
do not require the local functions to be symmetric. More generally, we
will study sets of such functions. The main result we obtain is a Galois
correspondence between sets of such n-tuples of functions and subgraphs
of the complete graph on n vertices. One consequence is that, given a set of
functions, there is a graph G, so that the functions are 1-local with respect
to G.
This result suggests a possible approach to the study of local functions

without explicit reference to a graph. Given that in applications the graph
defining the interaction of variables often changes, this might be significant
both theoretically and practically.
Then we consider the stable behavior of systems. The set of limit

cycles �f in the state space �f is a subdigraph of the state space, with each
connected component a single directed cycle, and f restricts to a bijection
on the vertices of �f .
Two systems are called isomorphic if there exists a digraph isomorphism

between their state spaces. They are stably isomorphic if there exists a
digraph isomorphism between their limit cycle graphs. In other words,
they are stably isomorphic if they exhibit the same long-term behav-
ior. In this paper we give algebraic conditions for systems to be stably
isomorphic.
Finally, we study a very special class of systems, namely the linear ones,

given by 	n × n
-matrices with coefficients in k. More generally, we study
affine systems and their stable isomorphism classes. In particular, we classify
explicitly two-dimensional systems.

1. THE STATE SPACE OF A FINITE DYNAMICAL SYSTEM

As for continuous dynamical systems, an important object related to a
finite dynamical system is its state space.

Definition 1.1. The state space �f of the finite dynamical system
f � kn → kn is the finite directed graph (digraph) with vertex set kn,
and with a directed edge from a vertex x to a vertex y if and only if
f 	x
 = y.

It is easy to see that the state space of a system f has a very specific struc-
ture. Directed paths in �f correspond to iterations of f on the element, or
state, at the beginning of the path. Since the set kn is finite, any directed
path must eventually enter a directed cycle, called a limit cycle. Thus, each
connected component of �f consists of one limit cycle, together with tran-
sients, that is, directed paths having no repeated vertices, and ending in
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a vertex that is part of a limit cycle. Note that a fixed point of f is a
degenerate case of a limit cycle.

Example 1.2. Consider the system f � k2 −→ k2 given by the matrix(
1 1
0 1

)
�

Then the state space of f has three connected components, two of which
consist of a single vertex, corresponding to the two fixed points of f , and
the third component is a limit cycle of length two.

2. LOCAL FUNCTIONS AND GRAPHS

Definition 2.1. Let n be a positive integer, let d be a nonnegative
integer, and let Y be a graph with vertex set �1� 2� � � � � n�.

1. A function

f � kn −→ kn

is d-local on Y if, for any 1 ≤ j ≤ n, the jth coordinate of the value of f
on x ∈ kn depends only on the value of those coordinates of x that have
distance less than or equal to d from j in Y . In other words, if f 	x
 =
		f1	x
� � � � � fn	x

, then

fj� kn −→ k

depends only on those coordinates that have distance less than or equal
to d from j.

2. Let Lj
d	Y 
 be the set of all functions

f � kn −→ kn

such that

f 	x1� � � � � xn
 = 	x1� � � � � xj−1� fj	x
� xj+1� � � � � xn
�

and fj� kn −→ k depends only on the values of those coordinates of x
which have distance at most d from j in Y . Hence L

j
d	Y 
 consists of

d-local functions on kn, which are the identity on all but possibly the jth
coordinate.
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Observe that neither Lj
0 nor L

j
n depends on the graph Y . Furthermore,

L
j
0
∼= Map	k� k
 contains all four possible functions, namely the identity

on k, the two projections to one element in k, and the inversion.
For the remainder of this section we study the set

L1n × · · · × Ln
n = �	f 1� � � � � f n
 � f j ∈ Lj

n��
i.e., f i = 	pr1� � � � � pri−1� f ii � pri+1� � � � � prn
 or

f i	x
 = 	x1� � � � � xi−1� f ii 	x
� xi+1� � � � � xn
�
with arbitrary functions f ii � kn → k. We denote by � the power set of
this set without the empty set; that is, its elements are nonempty sets of
n-tuples of functions from kn to itself, where the jth function applied to
x ∈ kn changes only the jth coordinate of x.

Theorem 2.2. There is a Galois correspondence between � and the set �
of subgraphs of the complete graph Kn on the vertex set �1� � � � � n�.
Proof. We first define functions

�� � −→ �� �� � −→ � �

and then verify that they satisfy the conditions for a Galois correspon-
dence, that is, that � and � are inclusion reversing, F ⊆ ��	F
, and G ⊆
��	G
.
Let F ∈ � . Define a subgraph �	F
 of Kn as follows. First construct

the set F̃ of all n-tuples f̃ = 	f̃ 1� f̃ 2� � � � � f̃ n
, which either are in F or
arise from an element in F by replacing one of the coordinates by a 0-local
function, that is, by a function from Li

0 for some i. Now define the graph
�	F
 as follows. An edge i–j of Kn is in �	F
 if and only if f̃ i ◦ f̃ j = f̃ j ◦ f̃ i
for all f̃ = 	f 1� � � � � f n
 ∈ F̃ .
Now let G ⊂ Kn be a graph. We define a set �	G
 of n-tuples of func-

tions on kn by

�	G
 = L11	�G
 × L21	�G
 × · · · × Ln
1	�G
�

where �G is the complement of G in Kn.
We need to show that � and � are inclusion reversing, that F ⊂ ��	F
,

and that G ⊂ ��	G
. To show the first property, let F ⊂ F ′ in � . Then
F̃ ⊂ F̃ ′. An edge i–j of Kn is in �	F ′
 if and only f i and f j commute for
every element f = 	f l
 ∈ F̃ ′. Since F̃ ⊂ F̃ ′, i–j is also contained in �	F
.
If G ⊂ G′ are subgraphs of Kn, then �G′ ⊂ �G. A 1-local function on the
smaller graph is certainly also 1-local on the larger graph. This shows that
the correspondence is inclusion reversing.
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To show that F ⊂ ��	F
, let 	f 1� � � � � f n
 ∈ F . We have to show that
f i ∈ Li

1	�	F

, i.e., that f i	x
 does not depend on the jth coordinate xj
of x if j is not connected to i in the graph �	F
. Let j	�= i
 be a vertex
in �	F
 such that i–j is not in �	F
. Let f̃ j be a function in L

j
0. Then

	f 1� � � � � f̃ j� � � � � f n
 ∈ F̃ . Since i–j is not in �	F
, it is in �	F
; hence
f i ◦ f̃ j = f̃ j ◦ f i for all four functions f̃ j ∈ L

j
0. Now

f̃ j ◦ f i	x
 = 	x1� � � � � f ii 	x
� � � � � f̃ jj 	x
� � � � � xn

and

f i ◦ f̃ j	x
 = 	x1� � � � � f ii 	x1� � � � � x̃j� � � � � xn
� � � � � f̃ jj 	x
� � � � � xn
�
where x̃j = f̃

j
j 	x
; hence f ii 	x
 and f i	x
 do not depend on xj .

Now we show that G ⊂ ��	G
. First observe that
�̃	G
 = �	G
 = L11	�G
 × L21	�G
 × · · · × Ln

1	�G
�
since Li

0 ⊂ Li
1	�G
. Let i–j be in G and let f ∈ �	G
. We have to show

that f i ◦ f j = f j ◦ f i holds, since then i–j is an edge in ��	G
. Now
f ∈ �	G
 = L11	�G
 × L21	�G
 × · · · × Ln

1	�G
 implies that f ii 	x
 does not
depend on xj since the edge i–j is not in �G and, similarly, f jj 	x
 does not
depend on xi. Hence we get

f i ◦ f j	x
 = f i
(
x1� � � � � f

j
j 	x
� � � � � xn

)
= (

x1� � � � � f
i
i 	x
� � � � � f jj 	x
� � � � � xn

)
and, similarly,

f j ◦ f i	x
 = f j
(
x1� � � � � f

i
i 	x
� � � � � xn

)
= (

x1� � � � � f
i
i 	x
� � � � � f jj 	x
� � � � � xn

)
�

Thus, we have f i ◦ f j = f j ◦ f i.
We illustrate this correspondence with an example. Let n = 3, and let F

consist of the single triple of functions f = 	f 1� f 2� f 3
 with
f 1	x1� x2� x3
 = 	x2� x2� x3
�
f 2	x1� x2� x3
 = 	x1� x1� x3
�
f 3	x1� x2� x3
 = 	x1� x2� x1 + x3
�

Inspection shows that the only edge of K3 contained in �	F
 is 2-3. Hence
�	F
 consists of a graph with three vertices and one edge. Hence its com-
plement is the graph with three vertices and two edges emanating from
vertex 1. Therefore, ��	F
 consists of the set of all functions 	g1� g2� g3

such that g1 is arbitrary, g2 does not depend on the third variable, and g3

does not depend on the second variable.
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Corollary 2.3. With notation as in the above theorem, we have

1.

��	G
 = G�

for all graphs G.

2.

���	F
 = �	F
�

and, in particular,

��	��	F

 = ��	F
�

for all sets F ∈ � . That is, �� is a closure operator on the set of n-tuples of
local functions on kn.

Proof. The second claim is a standard consequence of the properties
of a Galois correspondence. To show the first claim, let i–j be an edge
in ��	G
, and suppose that it is not in G. Then i–j ∈ �G. Recall that

�	G
 = L11	�G
 × · · · × Ln
1	�G
�

Then �	G
 contains the function f = 	f 1� � � � � f n
, such that fp = id for
all p �= i� j, and

f i	x1� � � � � xn
 = 	x1� � � � � xi−1� xi + xj� xi+1� � � � � xn
�
f j	x1� � � � � xn
 = 	x1� � � � � xj−1� 0� xj+1� � � � � xn
�

that is, f i (resp. f j) changes only the ith (resp. the jth) coordinate. Observe
now that f i ◦ f j �= f j ◦ f i. This implies that i–j is not in ��	G
, which is
a contradiction.

3. EQUIVALENCE RELATIONS ON SYSTEMS

In this section we consider several equivalence relations on systems.
The first one corresponds to the notion of topologically conjugate discrete
dynamical systems.

Definition 3.1. Two systems f� g� kn −→ kn are called isomorphic or
dynamically equivalent if there exists a bijective function φ� kn −→ kn such
that g ◦φ = φ ◦ f .
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It is easy to see that two systems are isomorphic if and only if they have
isomorphic state spaces, that is, the function φ induces an isomorphism of
directed graphs. This definition of dynamic equivalence has the property
that powers of f and of g are also isomorphic, since gs ◦ φ = gs−1 ◦ φ ◦
f = · · · = φ ◦ f s. So the dynamic behavior (under iteration) of f and g is
the same.

Lemma 3.2. If f � kn −→ kn is a system, and φ� kn −→ kn is an invertible
function, then the systems f and φ−1 ◦ f ◦φ are dynamically equivalent.

We now define a weaker equivalence relation on the whole collection of
systems �f � kn → kn � n ∈ ��, which we call stable equivalence. Then we
show that stable equivalence of systems corresponds to the existence of a
digraph isomorphism between the limit cycles in the respective state spaces.

Definition 3.3. Let f � kn → kn be a system with state space �f and
with the subdigraph �f of limit cycles. Then x ∈ kn is a vertex in �f if and
only if there exists a positive integer m such that fm	x
 = x. Let m be the
smallest integer such that fm	x
 = x for all x ∈ �f . We call m the order of
the system f , denoted Order	f 
.
Lemma 3.4. The integer Order	f 
 exists.
Proof. For each x ∈ �f there is an integer mx such that fmx	x
 = x.

Hence the least common multiple of all mx is an integer m such that
fm	x
 = x for all x.

Definition 3.5. Let f � kr −→ kr and g� km −→ km be two systems.
Then f and g are called stably equivalent if there exist maps p� kr −→ km

and q� km −→ kr , a positive integer s prime to lcm	Order	f 
�Order	g
),
and a nonnegative integer n, such that the diagram

kr
p−→ km

q−→ kr

↓ f s ↓ gs ↓ f s

kr
p−→ km

q−→ kr

commutes, and q ◦ p = f n, p ◦ q = gn.

We postpone the proof that stable equivalence is an equivalence relation
until after the following theorem.

Definition 3.6. Let f1� f2 be systems with state spaces �fi
and sub-

digraphs of limit cycles �fi
. We call f1 and f2 stably isomorphic if there

exists a digraph isomorphism between �f1
and �f2

.

It is clear that stable isomorphism is an equivalence relation.
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Theorem 3.7. Two systems f and g are stably equivalent if and only if
they are stably isomorphic.

Proof. First assume that f and g are stably equivalent; that is, there are
maps p� q, and a positive integer s prime to lcm	Order	f 
�Order	g

 and
a nonnegative integer n, such that gsp = pf s, qgs = f sq, and qp = f n,
pq = gn.
Let a �= Order	f 
, b �= Order	g
, lcm	a� b
 = a′b = ab′ for some inte-

gers a′� b′. Let rs + t · lcm	a� b
 = 1 for some positive integer r. We have
x ∈ �f if and only if f a	x
 = x. Similarly, x ∈ �g if and only if gb	x
 = x.
Given x ∈ �f , we have

gsa
′bp	x
 = 	gs
a′bp	x
 = p	f s
ab′ 	x
 = p	f a
sb′ 	x
 = p	x
�

Hence p	x
 ∈ �g, so that p induces a set map

P� �f −→ �g�

This map is also a morphism of digraphs. To show this, let x ∈ �f so that
f a	x
 = x. Then

Pf 	x
 = pf rs+tab
′ 	x
 = pf rs	x
 = grsp	x
 = grs+ta

′bp	x
 = gP	x
�
since p	x
 ∈ �g and gb	p	x

 = p	x
. But Pf = gP on �f implies that
P� �f −→ �g is a morphism of digraphs.
Note that f n is a bijection on �f for all n. From the definition of sta-

ble equivalence we obtain an n such that qp = f n. Hence P� �f −→ �g

is injective and Q� �g −→ �f is surjective. Similarly P is surjective, so
that P is an isomorphism of digraphs. This shows that f and g are stably
isomorphic.
Conversely, assume that f and g are stably isomorphic, with a digraph

isomorphism

P� �f −→ �g�

From each limit cycle in �f choose a vertex as representative, with
�x1� x2� � � �� the full set of representatives. Similarly, choose represen-
tatives �y1� y2� � � �� for the limit cycles of �g, such that P	xi
 = yi. The
restriction of P to each limit cycle gives an isomorphism of digraphs,

pi�
{
xi� f 	xi
� f 2	xi
� � � �

} −→ {
P	xi
 = yi� g	yi
� g2	yi
� � � �

}
�

with

pif
t	xi
 = gtpi	xi


for all t.
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We now construct a function p� kn −→ km as follows. Let x ∈ �f . There
exists a unique minimal s ∈ �0 such that f s	x
 ∈ �f . Let r be minimal such
that f s	x
 = f r	xi
 for a unique representative xi. Then define

p	x
 = pif
r−s	xi
�

where f r−s	xi
 is to be taken in �f if r − s is negative. Note that f is
bijective on �f , so that negative exponents r − s make sense. We have
s = 0 if and only if x ∈ �f . Observe that

pf 	x
 = pif
r−s+1	xi
�

Let a = Order	f 
. By adding a suitable multiple ta of a to r − s we can
force the exponent of f in the definition of p	x
 to be positive. Observe
that p	x
 is an element of �f .
We define q� km −→ kn similarly, using the inverse of P . We need to

verify that p and q satisfy the conditions of Definition 3.5, making f and g
stably equivalent.
First of all, for x ∈ kn, we have that p	x
 = pif

j	xi
 for some i� j. Then
gp	x
 = gpif

j	xi
 = pif
jf 	xi
 = pf 	x
�

A similar argument shows that fq = qg. This proves that p and q satisfy
the first condition of a stable equivalence, with s = 1.
To verify the second condition, we need to find a nonnegative integer n

such that qp = f n and pq = gn. We have

p	x
 = pif
r−s	xi
 = gr−spi	xi
 = gr−s	yi
�

Then, for each x,

qp	x
 = qig
r−s	yi
 = f r−sqi	yi
 = f r−s	xi
�

Hence

f sqp	x
 = f r	xi
 = f s	x

and

qp	x
 = f ta−s+sqp	x
 = f ta	x

for all sufficiently large t (such that ta ≥ s). Take the largest t occurring for
all x ∈ �f (and all y ∈ �g) and define n = ta. Then n satisfies the second
condition for stable equivalence.

The proof of this theorem implies the following corollary.

Corollary 3.8.
1. Stable equivalence is an equivalence relation.
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2. Using s = 1 in the definition of stable equivalence leads to the same
equivalence relation.

Remark 3.9. Note that stable equivalence is an equivalence relation on
the collection of ALL systems, without restrictions on the dimension. Fur-
thermore, observe that stable equivalence with n = 0 (and s = 1) is the
same as dynamic equivalence.

4. AFFINE SYSTEMS

In this section we give some results on linear and affine systems, with
explicit calculations in dimension two. First we consider linear systems, that
is, systems f � kn −→ kn, which are linear transformations.
For linear systems we can therefore immediately answer the question

about a possible canonical form. By Lemma 3.2 systems represented by
similar matrices have isomorphic state spaces. Hence we can use the ratio-
nal canonical form of the representing matrix as the normal form of a linear
system.
We derive a necessary condition for a finite dynamical system to be linear.

Proposition 4.1. Let f � kn → kn be an affine finite dynamical system.
Then the underlying set of the digraph of limit cycles �f is isomorphic to kt ,
for some t ≤ n. In particular, it has 2t elements.

Proof. Let a �= Order	f 
 be the order of f . Then x ∈ �f if and only if
f a	x
 = x. Assume first that f is linear. Then �f is the eigenspace for the
eigenvalue 1 of f a, a subspace of dimension t.
If f is affine then f a is also affine. Let f a	x
 = g	x
 + b with g linear

and b ∈ kn. We have x ∈ �f iff g	x
 + b = x iff 	g − 1
	x
 = −b. But the
preimage of −b under the linear map 	g − 1
 is an affine subspace and
has 2t elements.

The following result is based on an observation by C. Greither (private
communication).

Proposition 4.2. Let n ≥ 1 be an integer, and let t be a divisor of 2n − 1.
Then there exists a linear system f � kn −→ kn whose state space �f consists
of the fixed point 0 = 	0� 0� � � � � 0
, together with 	2n − 1
/t cycles of length t.
In particular, for every n there exists a linear system kn −→ kn with a limit
cycle of length 2n − 1.

Proof. The Galois field F2n is an n-dimensional vector space over k = F2
and hence is isomorphic to kn as a k-vector space. The multiplicative group
F∗
2n is cyclic of order 2

n − 1. For each divisor t of 2n − 1 there exists a
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(unique) subgroup of F∗
2n of order t. Let a be a generator of this subgroup.

Then the system

f � kn −→ kn�

given by multiplication by a, is linear and invertible. Furthermore,
Order	f 
 = t.
For any linear system 0 is a fixed point, and for an invertible system it is

a one-element component. The proposition now follows by observing that
the other components of �f correspond to the distinct cosets of �a� in F∗

2n ,
whose elements are cyclically permuted under multiplication by a.

This proposition shows that, for a given dimension n, there exist linear
systems with limit cycles of maximal length. This makes it problematic to
use limit cycle length for defining chaotic systems in the finite case.
For the rest of this section we investigate linear and affine systems of

dimension 2, that is, functions

f � k2 −→ k2�

which are of the form Ax + b, for a 	2 × 2
-matrix A and b ∈ k2. We
treat the two-dimensional case enumeratively and intend it to be mostly
illustrative. It shows a rich interplay between the linear algebra and the
combinatorics, which merits a more thorough investigation.
First we consider the case b = 0. There are 16 	2 × 2
-matrices over k,

which have the following six rational canonical forms:

	A

(
0 0
0 0

)
	B


(
1 0
0 1

)
	C


(
0 1
1 0

)
	D


(
0 1
0 1

)

	E

(
0 1
0 0

)
	F


(
0 1
1 1

)
�

An inspection of the state spaces shows that these six systems are pairwise
not dynamically equivalent. Inspection also shows that only the systems (A)
and (E) are stably isomorphic, both having a graph of limit cycles consisting
of a single vertex. Thus, there are five stable equivalence classes of linear
systems.
In dimension 2 it is feasible to simply enumerate all possible state spaces

for general systems, of which there are 18, listed in Fig. 1. These 18 iso-
morphism classes fall into 11 stable equivalence classes, depicted in Fig. 2.
We now consider affine systems. A straightforward verification shows that

the linear systems B, C, and D give rise to new isomorphism classes of
systems by choosing b = 	0� 1
t in all three cases. In the labeling above,
Bx+ b is a system of type (17), Cx+ b gives type (13), and Dx+ b results
in (15).
Of the 11 stable equivalence classes, we see that all but two are realized

by affine systems.
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(1) (2) (3)

(4) (5) (6)

(8) (9)

(16) (17) (18)

(7)

(10) (11)

(14)(13) (15)

(12)

FIG. 1. Possible state spaces for two-dimensional systems.

(1) (2) (3) (4)

(5) (6)

(8) (10) (11)(9)

(7)

FIG. 2. Representatives of stable equivalence classes.
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