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Abstract. The main issue of this paper is an axiomatization of the notion of abso-
lutely convergent series involving a set of summands of fixed (but unrestricted) infinite
cardinality N. This notion is used to define the category NppnSmod! of R-prenormed
R-semimodules with N-summation whose homomorphisms are contractive. Based on this
we introduce left N-convexity theories I' and the category I'C' of left I'-convex modules.
We show that the closed unit ball functor NppnSmod! — Set, the forgetful functor
I'C' — Set, and the associated I'-convex module functor NgpnSmod! — I'C' have left
adjoints.
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Introduction

The basic definitions of this paper are contained in §1. They concern an axiomatic
approach to the notion of “absolutely convergent series” in prenormed semirings
and prenormed semimodules . The type of series we are interested in have a set of
summands of a fixed, but arbitrary, infinite cardinality N. Semimodules equipped
with a family of such “summable” series are said to have N-summation. The section
concludes with few statements directly related to the basic definitions. §2 consists
of several results involving semimodules with N-summation. In addition we intro-
duce maps from a fixed, but arbitrary, set to a semimodule with N-summation
that are “summable”. These maps are used in §3 to define, for an arbitrary set
A, the free semimodule £V (A4) with N-summation on the set 4. LN (A) is a gen-
eralization of the well known functional-analytic concept of ¢;-space on the set
A. The functor Set 5 A — LN(A) € NgpnSmod' is the left adjoint of the for-
getful functor NrpnSmod' — Set; here, NppnSmod® stands for the category
of R-prenormed R-semimodules with N-summation and their contractive homo-
morphisms. In section 4 we deal with N-convexity theories I' over prenormed
semirings with N-summation (generalizing the corresponding concept in [5], §3
and §7), derive few of the properties of I'-convex modules, and give an explicit
construction of the free I'-convex modules. This construction differs from and is
more perspicuous than the one given in [3], §5. In §5 we introduce the functor
Or : NgpnSmod' — I'C, where for a given N-convexity theory T' the category
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I'C is the category of I'-convex modules and their homomorphisms. Or (M) is the
closed unit ball of M equipped with the obvious operation of I' on the closed unit
ball of M. In addition we exhibit the left adjoint ST of Op. The paper ends with
a section presenting several examples for the previously introduced concepts.

1. The basic definitions

Let R be a semiring (in the sense of [5], §1). Let furthermore N be a fixed set of
cardinality > Rg. Maps from N to R, that is elements of RV, will be denoted by
lower case greek letters with a lower placeholder symbol, e.g. oy or am; occasionally
we will write: {a, : n € N} or {a(n) : n € N} instead of a,. If we define a,+0,

as the map N 3 n — a,+8, € R then R becomes a semiring. If » € R and if

we denote the constant map N — R with value r by r, then R > r — r, € RV
is a homomorphism of semirings.

Let M be a semimodule (in the sense of [5], §1) over the semiring R. Then we
can again form M™Y. Let a, € RY and p,, . € MV, and define oy, and g, 4 o4
pointwise — as in the case of R — then M"Y becomes a R -semimodule. As before
we let m,, m € M, be the constant map with value m. Then M 3 m — m, € MY
is a homomorphism of R-semimodules.

If R is a partially ordered semiring and M is a partially ordered R-semimodule
(in the sense of [5], §1) then we define !, < iy, where pl, e € MY as p!, < oy
for all n € N. This makes M”" a partially ordered semimodule over the partially
ordered semiring R". Obviously, R 3 r — r, € RY and M 3> m — m, € MY are
order preserving. p, € MY is said to be bounded if there are m/,m" € M with
m! < pe <m!, and a family {u : 7 € I} is called uniformly bounded if there are
m/,m" € M with m/, < pt <m! for all i € I.

If M is an R-prenormed R-semimodule over the prenormed semiring R and if
| || denotes the prenorm with value cone C' (see [5], §2) then, with u, € MY, we
denote by ||gt«|| the map N > n + ||un|| € C; hence ||p4]| is in C™. This makes
MY a RN -prenormed R -semimodule over the prenormed semiring RY with value
cone CV.

Finally a construction that will be used later. Let A be some set and y : N —
A a set map. Let furthermore M be an R-semimodule and p, € M. Given a € A

~'(a)

we denote by py the map N — M given by

0 , otherwise.

~a)

In other words, py is given by the formulae

pY O =T e) and ot IV S x T a) = 0N T (a),



Note that any subset of N can be obtained as y~'(a), provided that A contains
at least two elements, and that each partition of N can be written as {y™!(a) :
a € A’} for some subset A’ of A, provided that A is large enough.

In the following definition we refer to the concept of positive semiring. Ac-
cording to [5], §1, a positive semiring is a partially ordered semiring with 0 as its
smallest element.

(1.1) Definition. Let C be a positive semiring. By a left N-summation for C
is meant a pair (Sc¢, X¢) consisting of a C-subsemimodule S¢ of CN and a C-
homomorphism ¢ : S¢ — C such that
(i) CN) .= {a, € CN : supp a, is finite} is contained in S¢ and for all
o, € O Se(ay) = Y {a, : n € supp a.}, where Y stands for the
usual sum of finitely many elements in C';
(ii) for all o, € S¢ and 3, € CVN with 8, < ay,fx is in Sc and Yo(fy) <
Se(o);

1
(iii) for every a, € S¢ and every map ¢ : N — N, af (n)

1s in S¢ for all
n € N, and the map ozf_l given by N 3 n — Zc(af_l(n)) € Cisin S¢
and satisfies Zc(ozf_l) = Yo(as);

(iv) if oy isin CV and there exists a map ¢ : N — N such that ozf_
Sc for all n € N and that ozf_l 1s in S¢ then o, 1sin Sc.

(n)

1s in

(1.2) Lemma. Let C be a positive semiring with left N-summation (Sc,Xc).
Then the conditions (1.1), (i)-(u1), imply that for every a, € Sc the inequalities
an < Yc(ay),n € N, hold; in particular, if sup{a, : n € N} ezists, sup{a, :n €
N} < Sc(ay) s satisfied. a

The next definition uses the notion of prenormed semiring. Due to [5], (2.1),
this is a semiring R together with a map || || : R — C, where C' is a positive and
complete (with respect to the partial order) semiring, such that

(0) 0=0 and 1] =1;

() Al 4 rall < flrfl + 2l , for all r1, 7 € R;
(i1) [frar2|| < lra[lr2]| , for all r1,ry € R.
The semiring C is called the value cone of R and || || is said to be the prenorm of

R.

(1.3) Definition. Let R be a prenormed semiring with prenorm || || : R — C. By
a left N-summation for R is meant a left N-summation (S¢, X¢) for C' together
with a pair (Sg,Xr) consisting of an R-subsemimodule S of RN and an R-
homomorphism ¥ : Sg — R such that
(0) ax € RY isin S if and only if ||a.|| is in S¢;
(i) R := {a, € RN : supp a, is finite} is contained in Sr and for all
a, € RN Sgp(a,) = Y a, : n € supp a,}, where 3 stands for the
usual sum of finitely many elements in R;
(ii) for all o, € Sg and B, € RN with 18]l < [|axll, B isin Sg and ||Zrfs|| <
Scfal;
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(n)

(iii) for every a, € Sp and every ¢ : N — N.af is in Sg for all n € N,

and the map ozf_l given by N 5 n — ZR(af_l(n)) € Risin Sg and satisfies

Sr(af ) = Salas).

Definition (1.4) requires the notion of R-prenormed left R-semimodule over

the prenormed semiring R with prenorm || || : R — C. By this is meant a left
R-semimodule M together with a map || || : M — C such that

(o) [0l = 0

(1) [[m1 + mz]|| < [|ma|| + ||m2]| , for all mq,my € M;

(ii) [frm]] < [|r]l]|m]| ,forallr € Rym € M.
(1.4) Definition. Let R be a prenormed semiring with prenorm || || : R —

C and N-summation (Sg,Xr) for R and (Sc,X¢) for C. An R-prenormed left
R-semimodule M with left N-summation is an R-prenormed left R-semimodule
together with a pair (Sps, X ) consisting of an R-subsemimodule Sy of MN and
an R-homomorphism ¥ : Sy — M such that

(0) px € MY isin Sy if and only if || is in Se;

(i) MWN) = {u, € MY : supp p, is finite} is contained in Sy and for all
e € M) Sar(ps) = Spn : n € supp s}, where 3 stands for the
usual sum of finitely many elements in M;

(i) for all p. € Spr and v, € MY with vl < |lpeelly ve isin Spr and || Sarvs| <
Sclll

(iii) for every p, € Sy and every ¢ : N — N,/,Lf_l(n)

is in Sy for alln € N,
and the map /,Lf_1 given by N 3 n — ZM(/,Lf_l(n)) € M isin Sy and
satisfies ZM(/,Lf_l) = Yar(pes).

Note that (1.3) is a special case of (1.4) and that (1.1) can be viewed as a special
case of (1.3) by setting R = C,|| || = id¢, Sk = Sc¢, and g = Y. Hence the
statements following (1.5) concerning semimodules apply to prenormed semirings
and positive semirings as well.

(1.5) Definition. Let M and M’ be R-prenormed R-semimodule with left N-
summation (Sar, Xar) resp. (Sarr, Xarr). Then a homomorphism from M to M' is
amap f: M — M’ such that

(i) f is a homomorphism of left R-semimodules from M to M’ satisfying

fN(Sy) C Sy and  Sap (Y () = F(Sar(pe)) , for all py € Sy

(ii) there is a ¢ € C (depending on f) with
15007 ()] < (Sl e for all 1, € S,
It is clear from (1.18) that the totality of R-prenormed R-semimodules with left

N-summation together with their homomorphisms and the set-theoretical compo-
sition of these forms a category NgpnSmod.



A homomorphism of R-prenormed R-semimodules is called contractive (or a
contraction) if ¢ = 1 can be chosen in (1.5), (ii). Again it is easy to see that the
totality of R-prenormed R-semimodules together with their contractive homomor-
phisms forms a subcategory NrpnSmod' of NzrpnSmod.

We close with three statements directly related to the above definitions.

(1.6) Lemma. (1.4), (o), implies that, whenever u, € Sy and v, € MY with
|vel| < ||pes|| holds then v, € Sy is satisfied.

Proof. Due to (1.4), (0), ||p«| is in Sc. Hence (1.1), (ii), shows that ||v.|| is in S¢

and thus, by (1.4), (o), vy is in Syy. 0
(1.7) Lemma. (1.4), (o) and (i1), imply that, whenever ., € Spyr and ¢ : N —»
N 15 a map, /,Lf_ (") s in Sw, for alln € N, and /,Lf_1 18 1 Spr.

Proof. Again ||| is in Sc. Since H/,Lf_l(n)H < ] H/,Lf_l(n)H is in S¢ and thus
pf” s in Sy By (1.4), (i),

IS0 "< Sellluf™ N = Sellud#™ ™).

Due to (1.1), (iii), N 3 n Zc(uf_l(n)) € Cisin Sc as ||p«|| is in S¢. Therefore

_1(n))

1
the map N > n — || Sar (s | € C is in S¢: and hence the map uf |, that is

N3ne Su(f ™), isin Sy, 0

(1.8) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(Sar, Xar) and denote the N -summation of R by (Sr,Xr). If o € Sp and p* € Sy
then a,pu*, defined as the map N > n— a,u™ € M, 1s in Sy.

Proof. Since a, is in Sg, it follows from (1.3), (o), that ||a.]|| is in S, whence
lon|] < Zcl|as|l, n € N, on account of (1.2). Therefore ||a,p*|] < (Ze|axl])]|p*]],
and (1.1) and (1.4), (o), show that the right hand side of this inequality is in Sc.
Thus ||axp*]] is in Se due to (1.1), (ii), whence a,p* is in Sy by (1.4), (o).

2. Elementary results

(2.1) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(Su,Sn). Let furthermore pie € Syy and v € MY be such that there is a bijection
P SUPD fhs — SUPD Vi With fin = Vg(n), for all n € supp px. Then vy 1s 1 Sy
and Ypr(ve) = Sar(ps).

Proof. Extend % to some map ¢ : N — N. Then one checks quickly that v, =

/,Lf_1 holds. Hence (1.1), (iii), shows that v, is in Sy and that Sar(vse) = Sar(ps)
1s valid. O
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(2.2) Corollary. Let M be an R-prenormed R-semimodule with left N -summation
(Sar,Xar). Let furthermore f @ A — M be a map with card(supp f) < cardN.
Then there is a map x : N — A, a pus € MY, and sets A’ and N' with
supp f C A" C A, supp us € N' C N, and cardA’ < cardN such that

a) A" Cx(N) and A’|x|N' is a bijection

b) pn = f(x(n)) , for alln € N'.
Moreover, if X, [t,, A and N is another set of data satisfying the above conditions,
for all n € N', then p, is in Sy of and only of @, is in Sy, n which case
Sa(ps) = En(fr,) holds.

Proof. The existence of x, ., A’, and N’ is obvious. The balance of (2.2) is an
immediate consequence of (2.1). O

(2.3) Remark. Suppose we are in the situation of (2.2) but are dealing with a
family {f, : n € N} of maps A — N, whose index set satisfies card N < cardN,
instead of looking at a single such map. If card(supp f,) < cardN, for all n € N,
then, as cardN? = cardN, card(|J{supp f. : n € N}) < cardN holds. Therefore,
in (2.2), x, A’, and N’ can be chosen such that for every f,, n € N, and the (now
uniquely determined) pryp, n € N , the conditions in (2.2) are satisfied. O

Due to (2.2) we can formulate

(2.4) Definition. Let M be an R-prenormed R-semimodule with left N-summa-
tion (Sar, Xar). Let furthermore A be any set. Then we define Sy 4 as the set of
maps f: A — M such that card(supp f) < cardN and for some data y, pi«, A,
and N’ in (2.2), ps € Spr holds. Moreover, we define Yps 4(f) := Zar(ps), for all
f € Sm,a, to obtain a map ¥4t Syoa — M.

Note that Sy,nv = Sy and Yy v = X hold. We will write occasionally

Yuma{f(a) : a € A} instead of Xy 4(f).
For f: A — M we denote by ||f|| the map A > a — || f(a)|| € C.

(2.5) Lemma. For every set A and every R-prenormed R-semimodule M with
left N-summation, Sy 4 15 an R-subsemimodule of M4 and Y“vmoa:Sua—M
is an R-homomorphism of R-prenormed semimodules; in particular, ||Zar,a(f)] <

Se,alll£1])-

Proof. Let f and g be in Sps 4. Choose the data in (2.2) to serve both f and ¢
(see (2.3)). If p, corresponds to f and v, corresponds to ¢ then, obviously, p. + v
corresponds to f + ¢g. Hence f 4 g belongs to Sas 4. Similarly one shows that rf,
r € R, f € Sy, 4, also belongs to Sy, 4. Moreover,

Emalf +9) = Zups +va) = Zp(pa) + B (vi) = g alf) + Xar,alg)



and

Sanal(rf) = Sp(reps) = r8um (ps) = rEaa(f).

Finally,
1Ea, 4D = [Ea ()l < Zedllp) = B alllf1])- u

(2.6) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(Sar, Sar). Furthermore let A be any set. Then f € M* belongs to Syr.a if and
only if || f]| € C* belongs to Sc. a.

Proof. (1.4),(0), and (2.3). 0

(2.7) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(Sar, Sar). Then, for any set A, MW .= {f € M : supp f is finite} is contained
in Syra and for all f € MW Sy a(f) = S f(a) : a € supp 1}, where 3

stands for the usual sum of finitely many elements in M.
Proof. (1.4), (1), and (2.2). O

(2.8) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(Sar, Sar). Furthermore let A be any set. If f is in Sy a and g € M4 with ||g| <
[F1l then g is in Sara and [[Za,a(9)]| < Ze,alll£])-

Proof. (1.4),(ii), and (2.2). O

(2.9) Lemma. Let M be an R-prenormed R-semimodule with left N-summation
(Sa.Xnr). Furthermore let A be any set. If f 1s in Sy 4 and v : A — A 1s any

map then, for any a € A, the map fd’_l(“) given by
azoe {40 if 06) =

0 , otherwise.

15 1 Syr a; moreover, the map fll’_1 gen by A S a— ZMA(fd’_l(“)) e M s n
Swua and S a(fY7) = Saralf).

Proof. (1.4),(iii), and (2.2). O

(2.10) Corollary. Let M be an R-prenormed R-semimodule with left N-summa-
tion (Spr,Xar). Furthermore let A be any set and 7 : A — A be any bijection.
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Then f € M* is in Syra if and only if f™ := fox is in Syra, in which case
Sar,a(f7) = Taralf).

Proof. Immediate consequence of (2.9) 0

(2.11) Lemma. Let M be an R-prenormed R-semimodule with left N -summation
(Sw.Xn). Furthermore let A and B be any sets. For f € Sy axp define f(a,-):
B — M resp. f(-,0) : A— M as the maps

B>bw f(a,b) e M resp. Asaw fla,b) € M.

Then f(a,-) i in Sy B, for alla € A, and f(-,b) is in Sy 4, for allb € B, and
the maps

A>a— Xy p(fla,-)eM resp. B3>bw— Xy a(f(-0) e M
are wn Sy,a resp. Su,p and satisfy

ZM7A{ZM7B{f(a,b) :b € B} a € A} = ZM7B{ZM7A{f(a,b) tac A} : b e B}
=Yy axs(f)-

Proof. By (2.2), (2.11) can be reduced to the case A = B = N. In this situation
choose a bijection N2 — N, use (2.1), and apply (1.4), (iii), twice. 0

As a special case of (2.11) we obtain

(2.12) Corollary. Let M be an R-prenormed R-semimodule with left N-summa-
tion (Sar,Xar). If o € Sr and m € M then the map a,m given by N 5 n —
apm € M is in Sy and Syr(aem) = (Sgpay)m. Similarly if r € R and px € Sy
then the map ri. given by N 3 n v ru, € M s in Sy and Sar(rps) = r(Sarpis).
O

(2.13) Corollary. Let f € M?, ¢ : A — B a map. For b € B let HfH%D_l(b) be
the map

1 ()l cif pla) =b;
Asar {O , otherwise.
Suppose that HfH“”_l(b) 15 10 Sc A for every b € B and that the map
Bob { ScoalllfIF®) Lif b e p(A);
0 , otherwise;

is in Sc.p. Then f is in Sura.

Proof. This is an immediate consequence of (1.1),(iii’),(1.4), (o), and (2.2). O



If should be pointed out that, with all index sets assumed to have cardinality
< cardN, there is a correspondence between certain axioms in [7], §6, and some
of the results obtained here. This correspondence is as follows:

Equivalent Families Axiom = (2.9),
Unary Sum Axiom = (1.4), (i),
Generalized Partition Axiom = (1.4), (iii),
Weak Double Sum Axiom = (2.11)

3. The closed unit ball functor

As in [5] one defines the closed unit ball functor By : NgpnSmod' — Set. Its
value on the object M of NppnSmod® is

By(M):={m e M :|m| < 1}.
(3.1) Theorem. By : NgpnSmod' — Set has a left adjoint LN.

Proof. We put LY (()) := {0}. If A # () is any nonempty set, we put — as a set —
,CN(A) = SR,A g RA.
Due to (2.5), LY (4) is an R-subsemimodule of R4,

Next we define a prenorm ||| ||| : LY (A) — C by putting
(3.2) A = e allfD) = Zeatllf(a)] - a € A} f e LN(A).
Since || f + gl < IIfIl + llgll, f and g in LN(A), we obtain from (2.5) and (2.8)
I+ glll < A+ Mgl e fIE < el 1AL 7 € Ry f € £Y(A), follows

similarly. This means that £V(A4) is an R-prenormed R-semimodule.

It remains to define (Sz~(ay, Zzn(ay). Let Fy € (RY)N. Given a € A we denote
the map N 3 n — F,(a) € R by Fi(a). Due to (1.3), (0), Fi(a) is in Sg if and
only if ||[Fi(a)||, that is the map N 3 n — |[|[F,(a)|| € C, is in Sc. In this case we
can form the map Y¢||Fy|| : A — C that is given by

(Xc|[Fel)(a) == Bo(|F(a)]]) ,a € A
With these notations we have
S =S8N
= {F, e LAY . ||Fi(a)|| € Sc, forall a € A, and S¢||Fy|| € Sc.a}-

In order to define 3 := Xz~ 4, let Fi be in S. Since || Fy(a)|| is in S¢ we have that
F.(a), that is the map N 3 n +— F,(a) € R, is in Sg. Due to (1.3), (ii), we obtain
IXrFi(a)| < Zc||Fe(a)||. If ErFy denotes the map A 5 a — Y rFy(a) € R then
we have ||SgpFy|| < Z¢||Fy||. Since the latter function is in Sc¢ 4, (2.8) shows that
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|IXrFy|| is in S¢ 4, whence X gF, is in Sg 4 due to (2.6). In other words, g F) is
in LNV (A), and we put ©F, := SgF,.

At this point we have to show that (S, 3) is a left N-summation for £V (4). So,
let F, and Gy be in S. Then F, + G, isthemap N >5n— F, + G, € ,CN(A) and
hence F, + G, € LY (A)YN. Moreover, (F, + Gy)(a) = Fy(a)+ Gp(a) for all a € A.
Thus, |(F, + G)(@)l| < [Fa(a)]| + G (a)]. Since both [IF,(a)] and | Gu(a)] are
in Se, (1.1) shows that ||Fy(a)|| + ||G«(a)]| is in S¢. Therefore (1.1), (ii), implies
that ||(Fyx + G4)(a)]| is also in S¢ and that

Te(|(Fe + G)(a)]) < Ze([[Fe(a)] + [G(a)]]) = Ze((|[Fe(a)]) + Ze (|G (a)l])

holds for all @ € A. This means that S¢||Fy + Gi|| < Z¢||Fi|| + Zc||Gs|| is valid.
By assumption both ¢ || Fy|| and Z¢||G.|| are in S¢, whence S || Fy|| + || G|
isin Sc. Thus (1.1), (ii), shows that S¢||Fy + G| is in Sc¢. Therefore F, + G, is in
S. Similarly, but more simply, one shows that F, € S and r € R implies rF, € 5.
Thus we have shown that S is an R-subsemimodule of £ (A)Y.

Next we need to prove that ¥ is a homomorphism of R-semimodules. Again
let Fy, and Gy be in S. Then Yg(Fi(a) + Gi(a)) = TrFi(a) + ErG4(a) and thus
Yr(Fy +Gy) = XpF+XrGy. Moreover, (Sgp(Fi+ Gy))e = (ZrFy) s + (ZrGy ),

whence

Similarly one obtains XrF, = rXF,, and ¥ is recognized as a homomorphism of
R-semimodules.

Now we wish to verify (1.4), (o). For this, let F, be in £N(4)". We have
to show that F, € S is equivalent with |||Fy||| € Sc, where |||Fx||| is the map
N 3 nw— |||F,||] € C. Let (Fy) denote the map A x N 5 (a,n) — || F,(a)]] € C.
Suppose that F, € S holds. Let ¢ : A x N — A be the projection onto the first
factor. Then, for every a € A,

= (a) ~[Fe(a)]| ,if b= a,
(£2) (b,n) = {O , otherwise.
Since ||Fy(a)|| is in Se, (F*)“”_l(“) belongs to Sc axn due to (2.1). Moreover,
Yol Fi(a)]| = ZqAxN(F*)“”_l(“). Since Y¢ a||Fy|| is in Sc 4, (2.12) shows that
(Fy)isin Sc axn. Thus (2.11) implies that, with ¢» : A x N — N the projection
onto the second factor, (F*)d’_l(") isin S¢ axn for every n € N. But due to (2.1)

S axn(F)V T = Se 4 {|[Fo(a)]| s a € A} = ||| n € N.

Hence (2.11) shows that |||Fy||| is in Sc. The same type of argument shows that
||| Fx||| € S implies Fy € S.

On to (1.4), (i). Here we are dealing with F, € LV (A)YN with finite support.
Hence | Fy(a)| has finite support and is therefore in S¢, for all @ € A. In particular,

Yel|Fla)ll = Z/{HFn(a)H tn € supp Fi}
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and hence
!
SollFell = {IFall : n € supp F.}.

Since Sc, 4 is an R-semimodule, the right hand side of the last equation, and thus
Yc||Fy|, is in Sc, 4. Therefore F, is in S. Moreover, with F, having finite support,
so does Fy(a), for all a € A, and

/
YrF(a) = Z {Fn(a) : n € supp Fy} ,a € A

Consequently,

SF, =XgF, = Z/{Fn :n € supp Fi},

and (1.4), (i), is satisfied.

Next comes (1.4), (ii). Let F, € S and G, € LN (A)Y with |||G.|]] < I|F:l]l.
By (1.4), (o), |||F«||| € Sc holds. Due to (1.1), (ii), |||G«]|| is in Sec. By (1.4),(o),
G, isin S. Since (¥pGy)(a) = Sr(Gi(a)) = Tr{Gn(a) : n € N}, it follows from
(1.3), (ii), that

[(ErGa)(a)]] < Zed][Gnla)ll - n € N} = Sel|Ga(a)]].
Therefore we obtain, as in the proof of (1.4), (o),
ISGII = Sl I(SrG)@] < a € A} < o alS{IGa(a)ll :n € N a € 4)
= Zoaxn((Gy)) = Boll|G]]
and, through (1.1), (iii),
HEG| < ZlllGAll < Sell[Fell-

There remains (1.4), (iii). Let F, € S and let ¢ : N — N be a map. By (1.7),

Ff_l(n) isin S, for all n € N, and Ff_l is in S. Moreover, for every a € A, due
to (1.3), (iii),

(SF.)(a) = Sp(Fi(a) = Sa(F.(a)? ) = Sp{(Sr(Fu(a)* ™)) :n € N}
= SR{(SR(FF ™)) in e N} = Sr{(SEF ™)) :n e N}
= (S{SFF " sn e NY)(a) = (SFF ) (a),

and thus Z(Ff_l) = X(Fy), as had to be shown.

At this point we know that £V (A) is an R-prenormed R-semimodule with left
N-summation (S (ay, Len(a))-

For a € A let 6 be the Dirac function at a on A, that is the map A — R
with §%(a) = 1 and §%(b) = 0, for all @ # b € A. By (1.3), (i), 6% is in LV (A)
and |||6%||| = 1 holds. The map A > a + §* € By(LN(A)) is denoted by § and
is called the Dirac map on A. We claim that § : A — By (LY (A)) is universal
with respect to NgpnSmod'. For this let M be an R-prenormed R-semimodule
with left N-summation (Sas,Xar) and let h: A — By (M) be any set map. Let
furthermore f € LV (A) and consider the map fh given by A 3 a — f(a)h(a) € M.
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Then [[fAll(a) = If(@h(@)] < IF@IIA@)] < (@), for every a € A. By
(1.3), (o), f € Sg 4 implies || f]| € Sc,a. The last inequalities together with (1.1),

(ii), show |[fh|| € Sc,a. Hence (1.4), (o), implies fh € Sy 4. Hence we have

h(f) =X a(fh) € M. Thus we obtain the map h:LN(A) — M. By (1.4), (i),
h(5“) h(a), for all @ € A. Since ¥y, 4 is a homomorphism of R-semimodules, the
same is true for k. We want to show that T is a homomorphism of R- prenormed R-
semimodules with left N-summation. Let F, € S. Then |||F\||| € Sc due to (1.4),

(0). Since, for any f € LV(A), [I[A(F)II] < [IIf]ll holds, we have ||[F" (F.)|| <
||| F«||| and thus |||EN(F*)||| € Sc by (1.1), (ii), and hence EN(F*) € Sc by (1.4),

(0). That is, EN(S) C Sur. Now consider Fy as a map A x N — R. Since ||| Fy]||
isin S¢, it follovvs from (2 12) that Fy isin Sp axn. Let p: A X N — A be the

first projection and put h:=hop. Then F, - h is in M**Y and it follows from
(2.8) that F, - his in Sum axn. Hence (2.11) and (2.12) lead to

ZM,AXN(F* . ;L) = ZM7A{ZM{FTL(CL) . h(a) tnc N} ra € A}

=Yy a{(Zr{Fn(a) :ne N})-hla):aec A}

= Sy a{(ZrFi(a)) -h(a):a € A} = Sy A((ZF)) - h) = h(ZF,).
On the other hand

MM,AXN(F* . iL) = ZM{ZMA{Fn(a)h(a) ta e A} tn & N}
- N
=Yy{h(F,):ne N} =Sy(h (Fy)).

This means that ZM(EN(F*)) = h(ZF,), which is the formula in (1.5), (i). Finally,
as |||EN(F*)||| < |||F«||| has been shown before, (1.4), (ii), implies

—N —N
[Zah (FL)|| < Zclllh (FOlll < (SclllFdl) - 1

showing (1.5), (ii), as well as proving that h is a contraction.

The very final step is now to show that % is unique. So, let A/ : LY (A) —
M be a contractive homomorphism of R-prenormed R-semimodules with left N-
summation such that h = h’' 0 §. Let f € LV (A). As in (2.2) we have supp f C
A" C A, N'C N, with cardA’ < cardN, and y : N — A satisfying (2.2), a). Let
f+« be the map

NS n s {f(X(”))5X(n) Jifne N’
0

, otherwise.

Obviously, f, isin (R4)N. Since f isin Sg_a, f« isin S and Sf, = f. Since A"V (f,)

is the map

NanH{MUWWﬁﬁw)ZﬂMWWWWM) Jifn e N,

0 , otherwise;
we have
W(f)=1'(Sf) = Su(h™ (£) = Saua{f(a)h'(8) s a € A}
= Smalfla)h(a) 1 a € A} = h(f),
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proving the required uniqueness. O

4. N-convexity theories

(4.1) Definition. Let R be a prenormed semiring with left N-summation
(Sr,XRr). By a left N-convezity theory over R is meant a subset I' of Sg such
that

(0) |lax|| € Sc and Te|lax]| <1 ,forall a, €T,

(i) 67 €T ,foralln € N,

(ii) for all a, 8%, n € N,inT the map (ag, B0) given by N 3 n — Sga.85 € R
1sin I

It is a simple consequence of (1.1), (ii) — (iv), that (ag, 85) satisfies (4.1), (o).

Let X be any set and denote the elements of XV by lower case letters with an

upper placeholder symbol, e. g. #* or z".

(4.2) Definition. Let T' be a left N-convexity theory over R. By a left T'-convex
module is meant a set X # {J together with a map

D' x XV 5 (ay,2%) = (ay,2*) € X

such that
(i) (67, a*) =a" Jforalln e N, o, €T, 2* € XV,
() (oo, (57,2%)) = (0, 07),2)  forall o, €T, 2 € TN, 2+ € XV

(4.3) Definition. Let I" be a left N-convexity theory. By a homomorphism of left
I'-convex modules X — X' is meant a map f : X — X’ such that

f(<04*751?*>):<0é*,fN(:1?*)> , for all o, € T, 2* € XN,

Let T be an N-convexity theory. Then the totality of left I'-convex modules and
their homomorphisms, with composition the set-theoretical one, form a category
I'C, the category of left I'-convex modules. Clearly, I'C' is an algebraic category.
Since it has a rank ([2], p.56), it has free objects on any set. However, we want
to construct such free objects explicitly. First, three technical statements about
[-convex modules. They correspond to [4], (2.4), (iii), (iv), and (viii), and the
proofs there carry over to the current situation with nominal changes only.

(4.4) Lemma. Let X be a left T'-convex module, let o, € T' with supp a, C
No C N, and let y*,z* € XV be such that y* = 2", for all n € Ny. Then
(au, y™) = (o, 27). 0
(4.5) Lemma. Let X be a left T'-convex module, let o, € T' and 2* € X. For any
byjection o : N — N define “av, resp. “x* as the maps

N3onm agqm €R resp. None 2™ e X,
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Then (o, x*) = (Tay, 7a*). O

(4.6) Lemma. Let X be a left T'-conver module, o, and B4 in T, and z* and y*
in X. Let furthermore ¢ : N — N be an winjection and assume

B = Qp—1(p) ,TLEQO(N), and Brn =10 7n¢99(N)7
=y e ().
Then (o, y*) = (By, ™). a

Next we have

(4.7) Theorem. (see [3], 5.4) The forgetful functor Vr : I'C — Set has a left
adjoint F'.

Proof. Let R be the prenormed semiring with left N-summation (Sgr,Xr) that
appears in the definition (4.1) of I'. Given any set A we define F'(A) as the set
of maps f : A — R such that card(supp f) < cardN and for some data x, (s,
A’ and N'in (2.2), B4 € T holds. In order to make F''(A) a left I-convex module
we have to define (a, f*), for all a, € T and f* € F'(A)Y. According to (2.3)
we can choose y, A’ and N’ such that for every f* € F'(A) C Sk a, n € N, the
conditions in (2.2) are satisfied. Suppose that 5] is associated to f™ via the data
x, A" and N'. Then 87 € T, for all n € N. Due to (4.1), (ii), (ag,BL) is in T
and, as is seen easily, supp (ag, 85) C |J{supp B2 : n € N} C N'. Hence there is
a unique f € FU(A) with supp f C A’ and f(x(n)) = (ag, B5), for all n € N'.
Denote this f by (a«, f*). By (2.2), f does not depend on the data chosen. It is
clear from the construction that (4.2), (i), is satisfied. In order to verify (4.2), (ii),
it suffices to show the existence and equality of the two terms

(oo, (B2 740 and  ({oo, B7).94)

for all ag € ', g0 e 'V, v& € I'YN. However, the existence of these expressions is
an immediate consequence of (4.1), (ii). As for equality, consider the map ag85~;
given by

N x N 5 (n,p) = anB,v] € R.

Since by (1.2), [|anB, 77|l < |lan]], it follows from (1.1), (o) and (ii), and (1.4), (o),
that the map N > n — anf,v{ € R is in Sg, whence Sg{a,f,v( : n € N} is
defined. Since, due to (1.2) and (1.3), (ii),

IZr{anBya? in € N} < SefllanlllB I n e N
< ScfllanllI87] : n € N},

and since by (1.1), (iv), the right hand side of this inequality (as a function of p)
is in S¢, it follows from (1.3), (o), that

NBpHZR{anﬁ]?’yf:nEN}ER

is in Sg. Hence (1.1), (iii’), and the use of a bijection N? — N show that ag85~F
is in Sr nxn. Therefore (2.11) leads to the desired equality. Which means, that
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FY(A) is a left D-convex module. The Dirac map § : A — F' (A) assigns to each
a € A the Dirac function §* at a. We claim that § : A — F'(A) is a universal
arrow. Let X be a left I'-convex module and let A : A — X be a set map. We
want to define an appropriate map A’ : F'(4) — X. Let f € FF(A). Choose for
f the data y, 34, A’, and N’ and denote by A* the map

Ay () e N
N9n|—>{x0 ,ifn & N,

where g is some element of X. It follows from (4.4) — (4.6) that (3,,h*) is in-
dependent of 19 and of the data chosen, and we put h/(f) := (8., h*). Obviously,
h'(6*) = h(a), a € A, whence b’ 0 § = h holds. Next we check that &’ is a homo-
morphism of left T'-convex modules. Let a, € T and f* € F'(4)N. By (2.3) we
can choose data so that they serve for all f*, n € N. If 5} is the element of T’
associated with f", n € N, via such data then

' ({as, f1) = ((og, B), h7),

while <a*7h/N(f*)> = <Oé|:|,< - h*>>7

*

whence the equality of the left hand sides of the last two equations follows from
(4.2), (ii), showing that A’ is a homomorphism of left I'-convex modules. As for
uniqueness of the required factorization, let / : F'(A) — X be a homomorphism
of left T-convex modules with hod = h. For f € FY(A) choose the data as
above to obtain 3, € T associated with f. Denote furthermore by §X(*) the map
N 5 n— 0X(" ¢ FI(A). An easy computation shows that f = (8,,6¥*)). Hence

h(f) = h({Bs, X)) = (B, AV (EX)) = (B, B*) = 1'( ). u

5. The associated I'-convex module functor

(5.1) Proposition. Let ' be a left N-convexity theory over R. Then there is a
functor Op : NppnSmod' —s I'C whose object function is the following:
if M s an R-prenormed R-semimodule with N-summation then the set under-
lying Or(M) is BN(M) and the T'-convex module structure on Or(M) is given

by
T x Op(M)N 3 (as, pu*) = Sar(aap®) =: (o, u*) € Op(M).

Proof. Since ||a,p*|| < ||ax]| and since ||ay|| € Sc by (4.1), (o), it follows from
(1.1), (i), that ||a.p™|| is in Sc and thus a,p* is in Syr, due to (1.4), (o). Hence
Yar(asp®) is well defined and

[Enr(aep)| < Belllowp|) < Be(laxdllle®l) < Bellaxd) <1,
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whence (ay, u*) = Zpr(ap™) is in Op(M). By (1.4), (i),
(00, 1) =Spm{dypu? :pe N} = pu" , for all n € N.

This verifies (4.2), (i). Now denote by agpPu* the map N x N 3 (n,p)
onBii? € M. Then an?]l < JonllIBZNN < 53], for oll np € N.
By (1.1), (iv), the right hand side of these inequalities, as a map N x N — C,
is in S¢ nxn. Therefore HozDﬁE/,L*H isin Se nxn by (1.1), (ii), and agfBu* is in
Su nxn by (1.4), (o). Hence (2.11) and (2.12) imply

Sy nxn(agBsPut) = Su{Sp{anBp? ine€ Ny :pe N}
=Yy {(Ep{anl) :n e Nl :pe N}
= ((ag, 87), 1")

and
Sy nxn(agBsPut) = Spu{Em{anfyp? :pe N} :in e N}
=Yp{an(Eu{Bp’ :peN}):n€ N}
= (am, (87, 1%)),

which is (4.2), (ii). Thus the object function described in (5.1) is indeed in I'C.
Finally, given f : M — M’ in NgpnSmod', we obtain from (1.5), (i),

Fllow, 1)) = F(Sapronp®) = Sap (fY (aap™))
= S (e (1)) = (o, N (15)),

showing that f induces a homomorphism of I'-convex modules. O

Since the value cone C' of a prenormed semiring is partially ordered, we obtain
an induced partial order on CV (it was described at the beginning of §1). If T is
a subset of CV, then inf T refers to this partial order on C'V.

(5.2) Theorem. Let R be a prenormed semiring with left N -summation. Suppose
that the value cone C' of R satisfies the following conditions
CO: C 1is complete (in the sense of [5], §1);
IS: for every T C Se, inf{¥c(ts) 1 te € T} = Se(inf{t, : t, € T});
LD: for every § # U C C, ug := inf{u : v € U}, and every t € C with
ug < ug +t there is a uy € U with ug < uy < ug +1t;
LIM: for every U C C and every ¢ € C, inf{cu:u € U} = cinf{u:u e U};
OP: for every cy € Sc there is a dy € CN such that
(0) ¢x +di € Sc;
(1) if en is not a mazimal element of C' (with respect to the partial
order of C) then ¢, < ¢y + dy.
Then for every left N-convezity theory T' over R, Or has a left adjoint ST.

Proof. Let X be a I'-convex module and denote the set underlying X again by X.
Form, as in the proof of (3.1), the R-semimodule £~ (X) together with the Dirac
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map § : X — LY(X) and consider the set
Si={(6") (0,,07)) s o, e D,a* € XV} C LV(X) x LY (X),
where 6% is the map N 3 n — 6" € LN(X). If h : LY(X) — M is a con-

tracting homomorphism of R-prenormed R-semimodules with N-summation we
say that h is S-compatible if Sy := {(f, ") : h(f) = h(f")} C LY (X) x LY (X)
contains S. Clearly, there are such contracting homomorphisms, e.g. the zero ho-
momorphism. Let ~ be the intersection of all these S;. Then ~ is an equiva-
lence relation, ST (X) := LN (X)/ ~ is an R-semimodule, and the quotient map
q: LY(X) — SY(X) is a homomorphism of R-semimodules satisfying

q(5<a*’x*>) = q(<oz*,5x*>) forall o, €T,2* € XV,
Now define ||| ||| : ST(X) — C by
[s[[:= it {{[£]I] - a(f) = s} ;s € SH(X).

Since C' is complete (in the sense of [5], §1), the above infimum exists, and it
follows easily from [5], (2.10), (IA), — which is a simple consequence of (IS) — and
(LIM) that ||| || : ST'(X) — C is a prenorm.

Next we put Sgr(x) := qN(SﬁN(X)). Suppose now that f., f; arein Sy~ (x) and
satisfy ¢ (f«) = ¢ (f1), that is ¢(fn) = q(f}) for all n € N. Then (f,, f.) € ~
and hence (f,, f!) € S, for all contracting homomorphisms h : LV (X) — M that
are S-compatible, for all n € N. This shows that h™V (f,) = AV (f!) and therefore

h(Sexx)fe) = Bu(RN (f2)) = S (RN (£) = h(Sex (x)FL),

that is we obtain the relation (Y.~ (x)fe, ¥znv(x)fi) € Sh for all such h, whence
(Zenvxyfe Bevix)fi) €~ holds. Thus we can define

ZSF(X)(S*) = q(ZﬁN(X)f*) , Sk € SSF(X)v

where f. € SY(X) is chosen such that ¢™V(f.) = s,. In particular, Q(Zevixy(fs)) =
ZSF(X)(QN(f*)) for all fu € Sg~(x). One checks easily that SL(X) is an R-
subsemimodule of ST(X)Y and that Ysr(xy 1 Ssrix)y — ST (X) is a homomor-
phism of R-semimodules.

Next we verify (1.4), (o), for ST(X). Let s, € Ssr(x) and choose f, € Sen(x)
with ¢ (f«) = s«. Then [||sa]l| < |||f2lll, n € N. Since |||f:]]| is in S¢, so is
|[|s«]]| due to (1.1), (ii). Conversely, assume s, € SY(X)™ and |||s.]|| € Sc. We

apply (OP) to ¢, := |||s«]|| and obtain d. with the properties stated there. If
|||sn]]] is a maximal element of C, choose f, € LY(X) such that ¢(f,) = sn.
Then ||| fulll = [IIse]ll- I |||sn]]| is not a maximal element of C', (LD) implies the

existence of an f, € LY(X) with ¢(fn) = s, and |||su]l| < £l < Nlsulll + dn.
Hence f, is in LN (X) and ||| £]|] < |l|s«]]] + d« € Sc, whence ||| f.]|| is in S¢ due
to (1.1), (ii), and thus fi is in Sgv(xy by (1.4), (o). Therefore s, = ¢ (fy) is in
SSF(X).

(1.4), (i), is trivially satisfied in the current situation.
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On to (1.4), (ii). It follows from (1.5) that s, € Ssr(x) and t, € SY(X)N with
[1£<]]] < []|s«]]] implies ¢, € Ssr(x). Hence there are g, € Sen(x) with t, = ¢™(gy)
and

Esreotlll = Ha(Eex cog)lll < 1S 2x )94l < Selllgalll;
due to (1.4), (ii), for LV (X). Hence we have

11Zsrxtelll < mf{Sclllgdl : ¢™ (g4) = t4}
= Sc(inf{|[lg.]ll : ¢" (9:) = t.3) = Scll[t|l-

Finally (1.4), (iii). Let ¢ : N — N be a map and let s, € Sgr(x). Then there is
an f. € Spnx) with s, = ¢ (f+). Since Sf_l(n) = qN(ff_l(n)) and since ff_l(n)
is in Se~(x)y, due to (1.4), (iii), applied to LN (X)), we have Sf_l(n) € Ssr(x) for
every n € N. Moreover, by definition, ZsF(X)Sf_l(n) = q(Z£N(X)ff_1(n)). Since
ff_l, that is the map N > n — ZﬁN(X)ff_l(n) c LY(X), is in S (x)y it follows
that sf_l is in Sgr(x). Finally

Ssrxyst = q(Sev0)fE) = a(Sevx)fe) = Ssrix)se
Thus we have shown that ST(X) is an R-prenormed R-semimodule with left N-
summation (Sgr(x), Ysr(x))-

Additionally we claim that ¢ : £~ (X) — S'(X) is a contracting homomor-
phism of R-prenormed R-semimodules with left N-summation. (1.5), (i), is obvious
from the construction of ST(X), while (1.5), (ii), - with ¢ = 1 — was established

in the above verification of (1.4), (ii).

What remains to be done is to show that By(q) 0§ : X — Op(SY(X)) is
a universal arrow. Since ¢ is a homomorphism of R-prenormed R-semimodules
with N-summation, By (g) o 4 is a homomorphism of left I'-convex modules. Let
h : X — Or(M) be such a homomorphism. Due to (3.1) there is a contrac-
tive homomorphism h' : LY(X) — M of R-prenormed R-semimodules with
N-summation with By (h') 0 4 = h. Since h is a homomorphism of left I'-convex
modules, h' is S-compatible and hence gives rise to a factorization h' = h” o ¢,
where A" : ST(X) — M is a contractive homomorphism of R-prenormed R-
semimodules with N-summation. Hence h = By (h" o ¢) 0 §, which is the required
factorization. We claim that h determines h uniquely. So, let ho qgod = h be
another factorization. Each s € ST(X) can be written as ¢(f), with f € LN (X).
Due to (2.4), f equals ZﬁN(X)(O{*(SX(*))7 where y : N — A is a suitable map and
o, € Sg is chosen appropriately. Hence we have

(s) = h(q(f)) = h(g(Sex(x) ()
= Spr(an(ho )N (8X)) = Sy (a,h®),

where hX(*) is the map N 3 n + h(x(n)) € Op(M). Thus h determines h uniquely.
O
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6. Examples

Clearly, every positive semiring C' has (CV), E/C), with E/C the usual sum in C',
as a left N-summation. Similarly, every prenormed semiring R has (RUV), EIR)
as a left N-summation, just as (M), E/N) is a left N-summation for every R-
prenormed R-semimodule. This means that the positive (resp. prenormed) semi-
rings, the R-prenormed R-semimodules, and the finitary convexity theories dis-
cussed in [5], §1 - §3, are special cases of the notions investigated in the present
paper.

One checks quite easily that the Banach semirings R discussed in [5], §6, are
another instance of the concepts treated here. The cone of such a Banach semiring
R has to satisfy suitable properties (see [5], 4.14 and 4.15); S¢ is then the subset of
C™ consisting of all those o, for which Sa, has a limit (in the sense of [5], §4), while
Yoy = sup{a, : n € N}. In addition, Sg is the set of those 8, € R for which
Y3, is an absolute Cauchy sum (in the sense of [5], §4), while £z, is the limit (in
the sense of [5], §4) of the infinite sum Y .. Analogously one obtains (S, Xar)
for each Banach R-semimodule M; in particular, each Banach R-semimodule is an
R-prenormed R-semimodule with N-summation in current terminology, while the
converse in general fails to be correct. However, if C := Ry = {r € R : r > 0},
R:=R,| || : R — Ry is the usual absolute value, and S¢ is the set of all o, € RY
for which > o, converges and Yooy = > o, then the Banach spaces over R (in the
sense of functional analysis) are precisely the R-prenormed R-semimodules with
x-summation as follows from a well known characterization of Banach spaces ([6],
3.1.2).

Now we want to characterize explicitly the concepts of the present paper in the

case where the semiring involved is the smallest semiring that is not a ring. Define
on the two-element set {0, 1}
addition by 0+40=0,04+1=14+0=1+1=1,
multiplication by 0-0=0-1=1-0=0,1-1=1,
partial order by 0<1.
Then {0, 1} equipped with this structure is a complete, commutative, and unital
semiring D. Define an N-summation on D by putting Sp := DV and Spa, :=
max{o, : n € N}. One checks easily that these data make D a positive semiring
with N-summation.

Put R := D and define || || : R — D by ||r|]| := r, » € R. Let furthermore
Sg =DV and g := Yp. Then R = Dis a prenormed (even normed) semiring with
N-summation. A D-prenormed D-semimodule M is commutative, idempotent (i.e.
m+m = m for all m € M) monoid together with a submonoid My (corresponding
to{m € M : ||m|| = 0}); one check easily that My can be an arbitrary submonoid
of M. The monoid M has the additional property that 0 is the only element of
M that possesses an (additive) inverse. Next we define “my < my” as “there is an
m € M with my +m = my”, for all m{, ms € M. One checks easily that this is a
partial order relation on M (in particular, m; < mg and ma < my imply my = mo)
that is compatible with the additive monoid structure on M. With respect to this
order relation, M has finite suprema and sup{my,...,m,} = my+...+m,. Hence
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My is closed under finite suprema. If the D-prenormed D-semimodule M has N-
summation (Sys, as) then (1.4), (o), implies Sy = MY If p, € MY and T C N
we denote by ! the map given by pl|T = p,|T and pl'|N T = 0,|N ~.T. Then
(1.4), (iii), shows that ¥y L < Spspy holds for all j, € MY and T C N. It follows
from (3.1) that for every m € M, m = Xrm, is valid. An immediate consequence
of this is ¥psp, = sup{p, : n € N}. This means that M has N-suprema, that is
suprema of all subsets of M of cardinality < cardN.

Conversely one checks easily that any commutative, idempotent, partially or-
dered monoid M with a distinguished submonoid My such that the partial order is
compatible with the monoid structure and has N-suprema is in fact a D-prenormed
D-semimodule with N-summation (MY, 3y), where Spsps = sup{p, : n € N}

Let I'p := DV, It is easy to see that I'p is an N-convexity theory over D. Let
X be a I'-convex module. Then we say that for x1,x2 € X the relation ¥y < 2 is
valid precisely when there are a, € I' and #* € XV such that

(i) there is an i € supp a, with 2! = 2,

(i) (o, ™) = 23.
One checks easily that this defines a partial order on X and that (with respect to
this partial order) X has N-suprema. In fact, (o, 2*) = sup{a™ : n € supp o, }.
Moreover, if Y C X is a subset of cardinality < cardN, let ¢ : ¥ — N be an
injective map, and define o, resp. x* as the maps (with yo € X chosen arbitrarily)

1, ifn € imyp; y L ifn=ey);
None { 0 ., otherwise; resp- None {yo , otherwise.
Then sup(Y) = (o, ™).
Conversely, if X is a partially ordered set that has N-suprema, define

(o, ) :=sup{a™ : n € supp a,} ,a, €T and z* € XV,

A simple computation shows that this makes X a I'p-convex module. Finally one
concludes from (4.3) that a map f : X — X' between I'p-convex modules is
a homomorphism of I'p-convex modules precisely when for each subset ¥ C X
of cardinality < cardN, sup(f(Y)) = f(sup(Y)) gilt. Hence the category I'nC
is isomorphic to the category of partially ordered sets with N-suprema and N-
suprema preserving maps.

Instead of I'p one could take the set 'y of all v, € I'p with card(supp ay) <
cardN. A simple computation shows that I'p, is an N-convexity theory over D.
Then one obtains the same results as in the case of I'p except that the requirement
“existence of the supremum of every subset YV with cardY < cardN” has to be
replaced by the requirement “existence of the supremum of every subset Y with
cardY" < cardN”.

Instead of I'p one could take the set I'p ~ {0,}. Again it is easy to see that
I'pse :=I'p ~ {0,} is an N-convexity theory over . Again, as before, the same
results remain in force, except that the subsets Y in question now have to be
nonempty. It should be pointed out, that I'ps. is the D-analog to the supercon-
vexity theory Q. := {a, € RV : a, > 0, foralln € N, and yao,, = 1}. The
D-analog to the classical convexity theory 2. := {a, € Qg : supp ay is finite} is
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then I'p . := {ax € I'p s : supp o is finite}; results similar to the above hold for
I'pe.
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