Algebra 2

Exercises Tutorium 9

Dr. Maksim Zhykhovich	Summer Semester 2020
Dr. Tom Bachmann	22.06 - 26.06.2020

Exercise 1. Let A be a Noetherian ring and let M be a finitely generated A-module. Show that every surjective homomorphism $\varphi: M \to M$ of A-modules is an isomorphism.

Hint: Show that submodules of M satisfy the ascending chain condition, and apply this to the sequence of modules $Ker(\varphi^{\circ n})$.

Exercise 2. Suppose given short exact sequences of abelian groups

$$0 \to \mathbb{Z} \to A_1 \to \mathbb{Z}/2 \to 0,$$

$$0 \to \mathbb{Z}/2 \to A_2 \to \mathbb{Z} \to 0,$$

$$0 \to \mathbb{Z}/2 \to A_3 \to \mathbb{Z}/2 \to 0.$$

Determine (up to isomorphism) possible groups A_i .

Exercise 3. Compute explicitly the following tensor products: (1) $\mathbb{Z}/\mathbb{R} \cong \mathbb{Z}/\mathbb{R}$ where \mathbb{R} and \mathbb{R} are distinct primes

(1) $\mathbb{Z}/p \otimes_{\mathbb{Z}/pq} \mathbb{Z}/q$, where p and q are distinct primes. (2) $\mathbb{Z}/n \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$ (3) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ (4) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$ (5) $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$