Algebra 2

Exercises Tutorium 8

Dr. Maksim Zhykhovich	Summer Semester 2020
Dr. Tom Bachmann	15.06 - 19.06.2020

Exercise 1. Let A be a ring. Consider Spec A with the Zariski topology. Recall that every closed subset in Spec A is of the form $V(I) := \{ \mathfrak{p} \in Spec A \mid I \subset \mathfrak{p} \}$ for some ideal I in A.

(1) Show that

$$V(I) \cap V(J) = V(I+J)$$
 and $V(I) \cup V(J) = V(IJ)$.

(2) Show that if there exists a non-trivial idempotent $e \in A$, that is $e^2 = e$, $e \neq 0, 1$, then Spec A is not connected.

Exercise 2. Let C[0,1] denote the ring of continuous real-valued functions on the closed interval [0,1]. Show that C[0,1] is not Noetherian.

Exercise 3. For any ring R, denote by $R[[x_1, \ldots, x_n]]$ the ring of formal power series, i.e. formal expressions of the form

$$\sum_{1,\dots,i_n\geq 0} a_{i_1,\dots,i_n} x_1^{i_1} \dots x_n^{i_n}$$

where the sum need not be finite.

(1) Show that $R[[x_1, \ldots, x_{n-1}]][[x_n]] = R[[x_1, \ldots, x_n]].$

(2) Show that $R[[x_1, \ldots, x_n]]$ is Noetherian if R is.

Hint: replace "leading term" with "lowest term" in the usual proof of the Hilbert basis theorem.