Algebra 2

Exercises Tutorium 7

Dr. Maksim Zhykhovich
Dr. Tom Bachmann

Summer Semester 2020
08.06-12.06.2020

Exercise 1. Let R be a ring and S a multiplicative subset in R. Denote by φ the ring homomorphism $R \rightarrow S^{-1} R, r \mapsto \frac{r}{1}$. We want to find a condition (*) on S, such that the following equivalence holds for all R and S

$$
\varphi: R \rightarrow S^{-1} R \text { is a bijection } \Longleftrightarrow S \text { satisfies condition }\left(^{*}\right) .
$$

(1) What condition $\left(^{*}\right.$) should be? Write your guess in the chat (without verification)!
(2) Show the above equivalence for the chosen condition.

Hint: Use without proof that

$$
\text { Ker } \varphi=\{x \in R \mid \exists s \in S \text {, such that } s x=0\} .
$$

Exercise 2. (1) Let n be a positive integer. Let $\mathbb{Z}_{(n)}:=S^{-1} \mathbb{Z}$, where $S=\{s \in$ $\mathbb{Z} \mid \operatorname{gcd}(s, n)=1\}$. Determine the prime spectra of $\mathbb{Z}[1 / n], \mathbb{Z}_{(n)}$ as well as their maps to $\operatorname{Spec}(\mathbb{Z})$.
(2) Determine the prime spectrum of $\mathbb{Z}[i]$ and its map to $\operatorname{Spec}(\mathbb{Z})$.

Hint: Use Aufgabe 4, Übungsblatt 10 from Algebra 1.

Exercise 3. Let A be a ring. Consider $\operatorname{Spec} A$ with the Zariski topology. Recall that every closed subset in Spec A is of the form $V(I):=\{\mathfrak{p} \in \operatorname{Spec} A \mid I \subset \mathfrak{p}\}$ for some ideal I in A.
(1) Show that

$$
V(I) \cap V(J)=V(I+J) \text { and } V(I) \cup V(J)=V(I J) .
$$

(2) Show that if there exists a non-trivial idempotent $e \in A$, that is $e^{2}=e$, $e \neq 0,1$, then $\operatorname{Spec} A$ is not connected.

