Algebra 2

Exercises Tutorium 7

Dr. Maksim Zhykhovich	Summer Semester 2020
Dr. Tom Bachmann	08.06 - 12.06.2020

Exercise 1. Let R be a ring and S a multiplicative subset in R. Denote by φ the ring homomorphism $R \to S^{-1}R$, $r \mapsto \frac{r}{1}$. We want to find a condition (*) on S, such that the following equivalence holds for all R and S

 $\varphi: R \to S^{-1}R$ is a bijection $\iff S$ satisfies condition (*).

(1) What condition (*) should be? Write your guess in the chat (without verification)!

(2) Show the above equivalence for the chosen condition.

Hint: Use without proof that

Ker
$$\varphi = \{x \in R \mid \exists s \in S, \text{ such that } sx = 0\}.$$

Exercise 2. (1) Let *n* be a positive integer. Let $\mathbb{Z}_{(n)} := S^{-1}\mathbb{Z}$, where $S = \{s \in \mathbb{Z} \mid gcd(s,n) = 1\}$. Determine the prime spectra of $\mathbb{Z}[1/n], \mathbb{Z}_{(n)}$ as well as their maps to $Spec(\mathbb{Z})$.

(2) Determine the prime spectrum of $\mathbb{Z}[i]$ and its map to $Spec(\mathbb{Z})$. *Hint:* Use Aufgabe 4, Übungsblatt 10 from Algebra 1.

Exercise 3. Let A be a ring. Consider Spec A with the Zariski topology. Recall that every closed subset in Spec A is of the form $V(I) := \{ \mathfrak{p} \in Spec A \mid I \subset \mathfrak{p} \}$ for some ideal I in A.

(1) Show that

 $V(I) \cap V(J) = V(I+J)$ and $V(I) \cup V(J) = V(IJ)$.

(2) Show that if there exists a non-trivial idempotent $e \in A$, that is $e^2 = e$, $e \neq 0, 1$, then Spec A is not connected.