Algebra 2

Exercises Tutorium 5

Dr. Maksim Zhykhovich	Summer Semester 2020
Dr. Tom Bachmann	25.05 - 29.05.2020

The goal of the next exercise is to find an irreducible polynomial over \mathbb{Z} , which is reducible modulo p for every prime p.

Exercise 1. Let $L = \mathbb{Q}[\sqrt{2}, i]$. Recall, that L is Galois over \mathbb{Q} with $\operatorname{Gal}(L/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Let $\alpha = \sqrt{2} + i \in L$. (1) Show that $L = \mathbb{Q}[\alpha]$. (2) Find the minimal polynomial F of α over \mathbb{Q} . (3) Show that F is irreducible over \mathbb{Q} , but the reduction of F modulo p is reducible in $\mathbb{F}_p[X]$ for every prime p. *Remark:* See also Aufgabe 2, Tutoriumsblatt 11 from the last semester.

Exercise 2. Let K be a field and P be an irreducible separable polynomial in K[X]. Let L be a splitting field of P over K. Show that if Gal(L/K) is abelian then $L = K[\alpha]$ for every root $\alpha \in L$ of P.

Exercise 3. Show that $PSL_2(\mathbb{F}_3) \simeq A_4$. *Hint:* Use the action of $PSL_2(\mathbb{F}_3)$ on $\mathbb{P}^1(\mathbb{F}_3)$.