Algebra 2

Exercises Tutorium 4

Dr. Maksim Zhykhovich	Summer Semester 2020
Dr. Tom Bachmann	18.05 - 22.05.2020

Exercise 1. Let G be a subgroup of S_n , $n \ge 3$.

(1) Assume that G acts transitively on the set $\{1, 2, ..., n\}$. Show that, if G contains an (n-1)-cycle and a transposition, then $G = S_n$.

(2) Assume that G contains an n-cycle, an (n-1)-cycle and a transposition. Show that $G = S_n$.

Exercise 2. Let G be the Galois group of $F(X) = X^4 + 3X^2 - 3X - 2$ over \mathbb{Q} . (1) Using the reduction modulo 2 show that $G \subset S_4$ containes a 3-cycle and that G acts transitively on the set of roots $R_f(\mathbb{C})$.

(2) Using the reduction modulo 5, conclude that $G = S_4$. Alternatively, use without verification that disc(F) = -20183 and deduce from (1) that $G = S_4$.

The goal of the next exercise is to find an irreducible polynomial over \mathbb{Z} , which is reducible modulo p for every prime p.

Exercise 3. Let $L = \mathbb{Q}[\sqrt{2}, i]$. Recall, that L is Galois over \mathbb{Q} with $\operatorname{Gal}(L/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Let $\alpha = \sqrt{2} + i \in L$.

(1) Show that $L = \mathbb{Q}[\alpha]$.

(2) Find the minimal polynomial F of α over \mathbb{Q} .

(3) Show that F is irreducible over \mathbb{Q} , but the reduction of F modulo p is reducible in $\mathbb{F}_p[X]$ for every prime p.

Remark: See also Aufgabe 2, Tutoriumsblatt 11 from the last semester.