Algebra 2

Exercises Tutorium 3

Dr. Maksim Zhykhovich	Summer Semester 2020
Dr. Tom Bachmann	11.05 - 15.05.2020

Exercise 1. Let K be a field with char(K) = 2.

(1) Show that every separable quadratic extension of K is isomorphic over K to

$$K_a := K[X]/(X^2 + X + a),$$

where $a \in K$ and $X^2 + X + a$ is irreducible over K. (2) Show that $\varphi : (K, +) \to (K, +), x \mapsto x^2 + x$, is a group homomorphism. Find

(2) Show that $\varphi : (K, +) \to (K, +), x \mapsto x^{-} + x$, is a group homomorphism. Find Ker φ .

(3) Show that K_a and K_b are isomorphic over K if and only if a = b in the group $(K, +)/\operatorname{Im} \varphi$.

(4) Assume K is finite. How many quadratic extensions of K are there up to isomorphism?

Exercise 2. (1) Let p be an odd prime number and let $n = p^2$. Denote by ζ_n the primitive *n*-th root of unity in \mathbb{C} . Show that $\operatorname{Gal}(\mathbb{Q}[\zeta_n]/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^*$.

Hint: Show that $(X^{p^2} - 1)/(X^p - 1)$ is the minimal polynomial of ζ_n over \mathbb{Q} . (2) Deduce that there exists a cyclic extension of degree p of \mathbb{Q} for every prime p.

Exercise 3. Determine the Galois group of $f(x) = x^4 + 3x^2 - 3x - 2$ over \mathbb{Q} . Does there exist a solution of f by radicals? *Hint:* You may use without verification that disc(f) = -20183.