Algebra 2

Exercises Tutorium 3

Dr. Maksim Zhykhovich
Summer Semester 2020
Dr. Tom Bachmann
Exercise 1. Let K be a field with $\operatorname{char}(K)=2$.
(1) Show that every separable quadratic extension of K is isomorphic over K to

$$
K_{a}:=K[X] /\left(X^{2}+X+a\right),
$$

where $a \in K$ and $X^{2}+X+a$ is irreducible over K.
(2) Show that $\varphi:(K,+) \rightarrow(K,+), x \mapsto x^{2}+x$, is a group homomorphism. Find Ker φ.
(3) Show that K_{a} and K_{b} are isomorphic over K if and only if $a=b$ in the group $(K,+) / \operatorname{Im} \varphi$.
(4) Assume K is finite. How many quadratic extensions of K are there up to isomorphism?

Exercise 2. (1) Let p be an odd prime number and let $n=p^{2}$. Denote by ζ_{n} the primitive n-th root of unity in \mathbb{C}. Show that $\operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}\right)$ is isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{*}$.
Hint: Show that $\left(X^{p^{2}}-1\right) /\left(X^{p}-1\right)$ is the minimal polynomial of ζ_{n} over \mathbb{Q}.
(2) Deduce that there exists a cyclic extension of degree p of \mathbb{Q} for every prime p.

Exercise 3. Determine the Galois group of $f(x)=x^{4}+3 x^{2}-3 x-2$ over \mathbb{Q}. Does there exist a solution of f by radicals? Hint: You may use without verification that $\operatorname{disc}(f)=-20183$.

