Algebra 2

Exercises Tutorium 2

Dr. Maksim Zhykhovich
Dr. Tom Bachmann

Summer Semester 2020
04.05-08.05.2020

Exercise 1. Let $L \subset \mathbb{C}$ be the splitting field of the polynomial $X^{3}-2$ over \mathbb{Q}.
(1) Show that $L=\mathbb{Q}[j, \sqrt[3]{2}]$, where $j=\frac{-1+\sqrt{3} i}{2} \in \mathbb{C}$.
(2) Show that $\operatorname{Gal}(L / \mathbb{Q}) \simeq S_{3}$.
(3) Using Galois correspondence, find all intermediate fields of the extension $\mathbb{Q} \subset L$.

Exercise 2. Let K be a field with char $K \neq 2$ and $f \in K[X]$ a separable polynomial of degree $n \geq 1$. Let L be a spliting field of f over K.
The discriminant of f is defined as follows:

$$
\operatorname{disc} f=\prod_{i<j}\left(\alpha_{j}-\alpha_{i}\right)^{2}
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of f in L.
(1) Show that disc $f \in K$.
(2) Recall that the Galois group $\operatorname{Gal}(L / K)$ acts on the set of n roots of f in L and therefore can be identified with the subgroup of S_{n}. Show that $\operatorname{Gal}(L / K)$ is a subgroup of A_{n} if and only if $\operatorname{disc} f$ is a square in K.
Hint: Consider the action of $\operatorname{Gal}(L / K)$ on $\prod_{i<j}\left(\alpha_{j}-\alpha_{i}\right)$.
Exercise 3. Let k be a field of characteristic 2 . Classify quadratic extensions of k.

