Algebra 2

Exercises Tutorium 12

Dr. Maksim Zhykhovich	Summer Semester 2020
Dr. Tom Bachmann	13.07 - 17.07.2020

Exercise 1. Let $K \subset L$ be a finite Galois extension with Galois group G. Show that the map

$$L \otimes_K L \longrightarrow \prod_{\sigma \in G} L$$
$$a \otimes b \longmapsto (a \cdot \sigma(b))_{\sigma \in G}$$

is an isomorphism of *L*-algebras, where the structure of an *L*-algebra on $L \otimes_K L$ is given by the multiplication on the first factor. *Hint:* Use Exercise 1, Tutorium 10.

Exercise 2. Determine the integral closures of $k[x, y]/(y^2 - x^3)$ and $k[x, y]/(y^2 - x^3 - x^2)$.

If there is time left after questions:

Exercise 3. (1) Let K/k be a finite Galois extension with group G, and A a k-algebra. Show that $(A \otimes_k K)^G = A$. (2) Describe the map $Spec(\mathbb{C}[X]) \to Spec(\mathbb{R}[X])$.