Algebra 2

Exercises Tutorium 1

Dr. Maksim Zhykhovich
Dr. Tom Bachmann

Summer Semester 2020
27.04-01.05.2020

Exercise 1. Let $\alpha=\sqrt{1+\sqrt{3}} \in \mathbb{R}$ and $\beta=\sqrt{3+2 \sqrt{2}} \in \mathbb{R}$. Show that α and β are algebraic over \mathbb{Q} and find their minimal polynomials over \mathbb{Q}.

Exercise 2. Let $P=X^{3}-3 X-1 \in \mathbb{Q}[X]$. Let $\alpha \in \mathbb{C}$ be a root of P.
(1) Show that P is irreducible over \mathbb{Q}.
(2) Find the minimal polynomial of α^{-1} over \mathbb{Q}.
(3) Show that $-\alpha^{-1}-1$ is also a root of P.
(4) Conclude that $\mathbb{Q} \subset \mathbb{Q}[\alpha]$ is a Galois field extension.

Exercise 3. (1) (Liouville's theorem) Let $\alpha \in \mathbb{R}$ be an irrational algebraic number satisfying $f(\alpha)=0$ with non-zero irreducible $f \in \mathbb{Z}[X]$ of degree d. Then there is a non-zero constant C such that for every fraction $p / q \in \mathbb{Q}$

$$
|\alpha-p / q| \geq \frac{C}{q^{d}}
$$

Hint: You may wish to first show that $|f(p / q)| \geq 1 / q^{d}$, and use the mean value theorem.
(2) Show that $\beta=\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ is not algebraic over \mathbb{Q}.

