Algebra

Tutoriumsblatt 5

Prof. Dr. Fabien Morel Dr. Maksim Zhykhovich WiSe 2019/2020 21.11.2019

Aufgabe 1. Seien G eine Gruppe und $G^{ab} := G/[G,G]$, wobei [G,G] die Kommutatorgruppe von G ist. Sei $p:G\to G^{ab},\ x\mapsto x[G,G]$, der kanonische Gruppenhomomorphismus.

Zeige die universelle Eigenschaft von G^{ab} : für jeden Gruppenhomomorphismus $\varphi: G \to H$ mit einer abelschen Gruppe H existiert es ein einziger Gruppenhomomorphismus $\psi: G^{ab} \to H$, sodass $\varphi = \psi \circ p$.

Aufgabe 2. (1) Sei G eine endliche Gruppe mit |G| = pq mit Primzahlen p < q. Es gelte $p \not | (q-1)$.

Zeige: G ist zyklisch.

(2) Folgere aus (1), dass jede Gruppe mit 15 Elementen zyklisch ist.

Aufgabe 3. (1) Sei G eine Gruppe mit |G| = 12.

Zeige: G enthält eine Sylowuntergruppe, die in G normal ist.

(2) Seien $A_4 := \{ \sigma \in S_4 \mid \operatorname{sgn} \sigma = 1 \}$ die alternierende Gruppe und

 $H = \{ id, (12)(34), (13)(24), (14)(23) \} \subset A_4.$

Zeige: H ist eine normale Untergruppe von A_4 .

Aufgabe 4. Seien G eine Gruppe und N eine normale Untergruppe von G.

(1) Sei S eine normale Untergruppe von N. Ist S normal in G? Bitte begründen Sie Ihre Antwort.

Hinweis: Betrachte $G = A_4$, N = H wie in der Aufgabe 3.2.

(2) Gleiche Frage, wenn S eine normale Sylowuntergruppe von N ist.