Algebra

Tutoriumsblatt 1

Prof. Dr. Fabien Morel Dr. Maksim Zhykhovich WiSe 2019/2020 24.10.2017

In diesem Blatt bezeichnet S_n , $n \in \mathbb{N}$, die symmetrische Gruppe, die aus allen Permutationen einer n-elementigen Menge besteht.

Aufgabe 1. Sei G eine Gruppe. Das Zentrum von G ist die Menge

$$Z(G) = \{ g \in G \mid gh = hg \text{ für alle } h \in G \}.$$

Zeige: $Z(S_2) = S_2$ und $Z(S_n) = \{1\}$ für $n \geq 3$.

Hinweis: Sei $\sigma \in Z(S_n)$. Dann gilt es $\sigma \circ \tau_{i,j} = \tau_{i,j} \circ \sigma$ für jede Transposition $\tau_{i,j}$, $i \neq j, 1 \leq i, j \leq n$.

Aufgabe 2. Finde explizit alle Untergruppen von S_3 . Bitte begründen Sie Ihre Lösung.

Aufgabe 3. Seien G eine Gruppe und $g \in G$ ein Element der Ordnung $m \in \mathbb{N}$. Sei $n \in \mathbb{N}$, sodass $g^n = 1$ in G. Zeige: m|n (m teilt n).

Aufgabe 4. (1) Seien G eine Gruppe und g, h zwei Elemente von G der Ordnung $n \in \mathbb{N}$ bzw. $m \in \mathbb{N}$, wobei n und m teilerfremd sind. Angenommen, g und h kommutieren (d.h. gh = hg). Zeige: gh hat Ordnung nm.

Bemerkung: Wenn n und m beliebig sind, dann ist die Ordnung von gh gleich dem kleinsten gemeinsamen Vielfachen von n und m.

(2) Sei $\sigma \in S_5$ mit $\sigma(1) = 2$, $\sigma(2) = 3$, $\sigma(3) = 1$, $\sigma(4) = 5$, $\sigma(5) = 4$. Finde die Ordnung von σ in S_5 .

Hinweis: Schreibe σ als Produkt von zwei disjunkten Zyklen und verwende (1). (3) Seien

$$A = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}.$$

Finde die Ordnung von A und B in der Gruppe $GL_2(\mathbb{C})$ und zeige, dass AB unendliche Ordnung in $GL_2(\mathbb{C})$ hat.