Algebraic theory of quadratic forms and Kaplansky's problem

Exercise Sheet 8

PD Dr. Maksim Zhykhovich Summer Semester 2025, 27.06.2025

Exercise 1. Find the higher Witt indices of the form $11\langle 1 \rangle$ over \mathbb{R} .

Exercise 2. Let F be a field and let IF be the fundamental ideal in W(F). (1) (Arason-Pfister Theorem) Let q be an anisotropic quadratic form over F, such that $q \in I^n F$, $n \in \mathbb{N}$. Show that dim $q \ge 2^n$.

Hint: The ideal $I^n F$ is additively generated by *n*-fold Pfister forms. Hence, $q = a_1 \pi_1 + \ldots + a_r \pi_r$ in W(F) for some *n*-fold Pfister forms π_1, \ldots, π_r , $r \in \mathbb{N}$ and $a_i = \pm 1$. Proceed by induction on *r*. For the induction step use the function fields of quadratic forms.

(2) Deduce from (1) that $\bigcap_{n \in \mathbb{N}} I^n F = 0$ in W(F).

(3) Let f be an odd dimensional quadratic form over F. Show that f is not a zero divisor in W(F).

Hint: Use the question (2).

Remark: If $s(F) < +\infty$, then it was proven in the lecture, that f is a unit in W(F).

Exercise 3. Let F be a field and n a positive integer. Show that the matrix F-algebra $M_n(F)$ is central and simple.

Exercise 4. Let F be a field and let A be a quaternion algebra over F with the usual basis 1, i, j, k. Set $A_0 = \{yi + zj + tk \mid y, z, t \in F\}$. Let $v \in A$. Show that $v \in A_0$ if and only if $v^2 \in F$ but $v \notin F$.