Algebraic theory of quadratic forms and Kaplansky's problem

Exercise Sheet 4

PD Dr. Maksim Zhykhovich Summer Semester 2025, 23.05.2025

Exercise 1. Let p be a prime number. Recall that the ring of p-adic integers is defined as follows:

$$\mathbb{Z}_p := \varprojlim_n \mathbb{Z}/p^n \mathbb{Z} = \{ (x_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} \colon x_n \in \mathbb{Z}/p^n \mathbb{Z}, \ x_{n+1} \equiv x_n \bmod p^n \}.$$

(1) Show that $\mathbb{Z}_p^{\times} = \{(x_n)_{n \in \mathbb{N}} \in \mathbb{Z}_p \mid x_1 \neq 0\}.$

(2) Show that $\mathbb{Z} \to \mathbb{Z}_p$, $a \mapsto (a \mod p^n)_{n \in \mathbb{N}}$, is an injective ring homomorphism. We identify the image of this map with \mathbb{Z} .

(3) Consider the ring homomorphism $e_m : \mathbb{Z}_p \to \mathbb{Z}/p^m\mathbb{Z}, (x_n)_{n \in \mathbb{N}} \mapsto x_m$. Show that the kernel of e_m is the principal ideal (p^m) in \mathbb{Z}_p .

(4) Denote by \mathbb{Q}_p the field of fractions of \mathbb{Z}_p . Show that $\mathbb{Q}_p = \mathbb{Z}_p[p^{-1}]$.

(5) Show that every element $x \in \mathbb{Q}_p$ can be uniquely written in the form $x = p^k u$, where $u \in \mathbb{Z}_p^{\times}$. Define $v : \mathbb{Q}_p^{\times} \to \mathbb{Z}, v(p^k u) = k$. Show that v is a discrete valuation on \mathbb{Q}_p .

(6) Show that \mathbb{Q}_p is complete with respect to the *p*-adic metric $d(x, y) = 1/p^{v(x-y)}$.

What is the residue field of \mathbb{Q}_p ? (7) Show that the sequence $(\sum_{k=0}^n p^k)_{n \in \mathbb{N}}$ converges to $\frac{1}{1-p}$ with respect to *p*-adic metric.

(8) Show that \mathbb{Q} is not complete with respect to *p*-adic metric.

Exercise 2. (1) Find all odd prime numbers p, such that the quadratic form $\langle 3, 7, -15 \rangle$ is isotropic over \mathbb{Q}_p .

(2) For which odd prime numbers p does the quadratic form (3,3,11) represent 2 over \mathbb{Q}_p ?

(3) Let $K = \mathbb{R}(t)$. Determine whether the quadratic form $\langle t, -t^2, \frac{t-1}{t+1}, -t^2+t^3 \rangle$ is isotropic or anisotropic over K?

Exercise 3. Let p be an odd prime number. Let $u \in \mathbb{Q}_p$ be such that $u \in U$ (that is $v_p(u) = 0$) and $\bar{u} \notin \mathbb{F}_p^{\times 2}$. Show that the form $q := \langle 1, -u, -p, pu \rangle$ is the unique (up to an isometry) 4-dimensional anisotropic form over \mathbb{Q}_p .