Algebraic theory of quadratic forms and Kaplansky's problem

Exercise Sheet 2

PD Dr. Maksim Zhykhovich Summer Semester 2025, 08.05.2025

Exercise 1. Let (V, q) be a quadratic form over a field F. Recall that the vector subspace $U \subset V$ is called *totally isotropic* if q(x) = 0 for every $x \in U$. (1) Show that

 $i(q) = \max\{\dim U \mid U \text{ is a totally isotropic vector subspace in } (V,q)\},\$

where i(q) denotes the Witt index of q.

Hint: Proceed by induction on $\dim q$.

(2) Let W be a vector subspace of V, such that $\dim W + i(q) > \dim V$. Show that the quadratic form $q_{|W}$ is isotropic.

Exercise 2. Let V be a vector space over a field F. Let $V^* = \text{Hom}_F(V, F)$ be the dual space. Consider the map $q: V \oplus V^* \to F, (v, f) \mapsto f(v)$. (1) Show that $(V \oplus V^*, q)$ is a non-degenerate quadratic form. (2) Show that q is hyperbolic. *Hint:* Use Exercise 1.1.

Exercise 3. Let F be a field. Let c be an element in F^{\times} , such that $c = a^2 + b^2$ for some $a, b \in F$. (1) Show that the 4-dimensional form $\langle 1, 1, -c, -c \rangle$ is hyperbolic.

Hint: First show that the form $\langle 1, 1, -c, -c \rangle$ is isotropic.

(2) Show that the quadratic form $\langle 1, -c, -c \rangle$ is isotropic.

Hint: Use Exercise 1.2.

Exercise 4. Let (V_1, q_1) , (V_2, q_2) be two quadratic forms over a field F and set $V = V_1 \otimes V_2$.

Show that there exists a unique bilinear form $B: V \times V \to F$ satisfying

$$B(v_1 \otimes v_2, v_1' \otimes v_2') = B_{q_1}(v_1, v_1') B_{q_2}(v_2, v_2').$$

for every $v_1, v'_1 \in V_1$ and $v_2, v'_2 \in V_2$.