Algebraic theory of quadratic forms and Kaplansky's problem

Exercise Sheet 10

PD Dr. M	Maksim Zhykhovich	Summer Semester 2	2025, 11.07.2025

Exercise 1. Let F be a field and $a, b, c \in F^{\times}$. Assume that the quaternion algebras $\left(\frac{a,b}{F}\right)$ and $\left(\frac{a,c}{F}\right)$ are split. Show that $\left(\frac{a,bc}{F}\right)$ is also split.

Remark: Give two proofs: one using Wedderburn's theorem and one using norm forms.

Exercise 2. (Frobenius theorem)

(1) Show that any finite dimensional division \mathbb{R} -algebra A is isomerphic to \mathbb{R} , \mathbb{C} or \mathcal{H} , where $\mathcal{H} = (\frac{-1,-1}{\mathbb{R}})$ denotes the algebra of Hamilton's quaternions.

Hint: Observe that any \mathbb{R} -subalgebra of A is also division. Consider the center Z(A) of A and show that $Z(A) \simeq \mathbb{R}$ or $Z(A) \simeq \mathbb{C}$. In case $Z(A) = \mathbb{R}$ proceed as in Exercise 2, Sheet 9.

(2) Describe all central simple algebras over \mathbb{R} up to isomorphism.

Exercise 3. Let F be a field and $A = \left(\frac{a,b}{F}\right) \otimes \left(\frac{c,d}{F}\right)$ a biquaternion algebra over F, where $a, b, c, d \in F^{\times}$. Let $q = \langle -a, -b, ab, c, d, -cd \rangle$ be the associated Albert form of A. Show the following implications:

(1) q is hyperbolic \iff A is split (that is $A \simeq M_4(F)$).

Hint: Consider $\left(\frac{a,b}{F}\right) \otimes_F A$ and use the "uniqueness" from Wedderburn's theorem. (2) q is isotropic \Leftarrow A is not division.

Hint: Assume A is not division. Using Wedderburn's theorem show that A is split over some quadratic extension of F. Then use (1).

Remark: The direction \implies in (1) and (2) is already proven in Exercise Sheet 9, Exercise 3.

Exercise 4. Let A and B be two F-algebras (not necessarily finite dimensional). (1) Show that $Z(A \otimes_F B) = Z(A) \otimes_F Z(B)$.

Hint: Let $\{x_i\}_{i \in I}$ be an *F*-basis of *B*. Write an element from $Z(A \otimes_F B)$ in the form $\sum_{i \in I} a_i \otimes x_i$ for some $a_i \in A$. What can one say about the elements a_i ?

(2) Assume that A is central simple. Show that the two-sided ideals in $A \otimes_F B$ are of the form $A \otimes_F J$, where J is a two-sided ideal in B.

Hint: Let J be a two-sided ideal in $A \otimes_F B$. Observe that $J := \tilde{J} \cap (1 \otimes B)$ is a two-sided ideal in B and show that $\tilde{J} = A \otimes_F J$.