Algebraic theory of quadratic forms and central simple algebras

Exercise Sheet 2

Dr. Maksim Zhykhovich
Summer Semester 2024, 27.04.2024
Exercise 1. Let (V, q) be a quadratic form over a field F. Recall that the vector subspace $U \subset V$ is called totally isotropic if $q(x)=0$ for every $x \in U$.
(1) Show that

$$
i(q)=\max \{\operatorname{dim} U \mid U \text { is a totally isotropic vector subspace in }(V, q)\},
$$

where $i(q)$ denotes the Witt index of q.
Hint: Proceed by induction on $\operatorname{dim} q$.
(2) Let W be a vector subspace of V, such that $\operatorname{dim} V-\operatorname{dim} W<i(q)$. Show that the quadratic form $q_{\mid W}$ is isotropic.

Exercise 2. Let V be a vector space over a field F. Let $V^{*}=\operatorname{Hom}_{F}(V, F)$ be the dual space. Consider the map $q: V \oplus V^{*} \rightarrow F,(v, f) \mapsto f(v)$.
(1) Show that $\left(V \oplus V^{*}, q\right)$ is a non-degenerate quadratic form.
(2) Show that q is hyperbolic.

Hint: Use Exercise 1.1.

Exercise 3. Let F be a field. Let c be an element in F^{\times}, such that $c=a^{2}+b^{2}$ for some $a, b \in F$.
(1) Show that the 4 -dimensional form $\langle 1,1,-c,-c\rangle$ is hyperbolic.

Hint: First show that the form $\langle 1,1,-c,-c\rangle$ is isotropic.
(2) Show that the quadratic form $\langle 1,-c,-c\rangle$ is isotropic.

Hint: Use Exercise 1.2.

Exercise 4. Let $\left(V_{1}, q_{1}\right),\left(V_{2}, q_{2}\right)$ be two quadratic forms over a field F and set $V=V_{1} \otimes V_{2}$.
Show that there exists a unique bilinear form $B: V \times V \rightarrow F$ satisfying

$$
B\left(v_{1} \otimes v_{2}, v_{1}^{\prime} \otimes v_{2}^{\prime}\right)=B_{q_{1}}\left(v_{1}, v_{1}^{\prime}\right) B_{q_{2}}\left(v_{2}, v_{2}^{\prime}\right) .
$$

for every $v_{1}, v_{1}^{\prime} \in V_{1}$ and $v_{2}, v_{2}^{\prime} \in V_{2}$.

