Algebraic theory of quadratic forms and central simple algebras

Exercise Sheet 1

Dr. Maksim Zhykhovich	Summer Semester 2024, 25.04.2024
-----------------------	----------------------------------

All quadratic forms are supposed to be non-degenerate (except in Exercise 1).

Exercise 1. Let (V,q) be a quadratic form over a field F. Show that the map $\tilde{q}: V/\operatorname{Rad} q \to F, \tilde{q}(\bar{v}) := q(v)$, is a well-defined non-degenerate quadratic form over F.

Exercise 2. (1) Let (V, q), (V', q') be two quadratic forms over a field F and let $\varphi : (V, q) \to (V', q')$ be an isometry. Recall that $\varphi : V \to V'$ is an isomorphism of vector spaces, such that $q(x) = q'(\varphi(x))$ for every $x \in V$. Let B_q and $B_{q'}$ be the bilinear forms associated to q and q' respectively.

(1) Show that $B_q(x,y) = B_{q'}(\varphi(x),\varphi(y))$ for every $x, y \in V$.

Deduce that: $x \perp y \iff \varphi(x) \perp \varphi(y)$.

(2) Let U be a vector subspace of V. Show that $\varphi(U^{\perp}) = \varphi(U)^{\perp}$.

(3) Let $\psi : (V', q') \to (V'', q'')$ be another isometry. Show that the composition $\psi \circ \varphi : (V, q) \to (V'', q'')$ is also an isometry.

(4) Show that $O(V,q) = \{\text{isometries of } (V,q)\}$ is a group. This group is called the *orthogonal group* of q.

Exercise 3. Let (V,q) be a quadratic form over a field F. Let $y \in V$ be an anisotropic vector (i.e. $q(y) \neq 0$). Recall that the *reflection* $\tau_y : V \to V$ is a linear map given by a formula

(1)
$$\tau_y(x) = x - \frac{2B_q(x,y)}{q(y)}y$$

for every $x \in V$, where B_q is the bilinear form associated to q. Let now $x, y \in V$, such that q(x) = q(y) and $q(x - y) \neq 0$. Using formula (1) show that the reflection τ_{x-y} sends x to y.

Exercise 4. Let F be a field. Recall that a quadratic form (V,q) represents $a \in F$ if there exists $v \in V$, $v \neq 0$, such that q(v) = a. We say that q is *isotropic* if it represents 0.

(1) Let q be an isotropic quadratic form over F. Show that q represents every $a \in F$.

Hint: Let $v \in V$, $v \neq 0$, with q(v) = 0. Choose $w \in V$, such that $B_q(v, w) \neq 0$ and consider $q(\alpha v + w)$, where $\alpha \in F^{\times}$.

(2) Show that a quadratic form f over F represents $a \in F^{\times}$ if and only if the quadratic form $f \perp \langle -a \rangle$ is isotropic.