Algebraic theory of quadratic forms and central simple algebras

Exercise Sheet 1

Dr. Maksim Zhykhovich
Summer Semester 2024, 25.04.2024
All quadratic forms are supposed to be non-degenerate (except in Exercise 1).
Exercise 1. Let (V, q) be a quadratic form over a field F. Show that the map $\widetilde{q}: V / \operatorname{Rad} q \rightarrow F, \widetilde{q}(\bar{v}):=q(v)$, is a well-defined non-degenerate quadratic form over F.

Exercise 2. (1) Let $(V, q),\left(V^{\prime}, q^{\prime}\right)$ be two quadratic forms over a field F and let $\varphi:(V, q) \rightarrow\left(V^{\prime}, q^{\prime}\right)$ be an isometry. Recall that $\varphi: V \rightarrow V^{\prime}$ is an isomorphism of vector spaces, such that $q(x)=q^{\prime}(\varphi(x))$ for every $x \in V$. Let B_{q} and $B_{q^{\prime}}$ be the bilinear forms associated to q and q^{\prime} respectively.
(1) Show that $B_{q}(x, y)=B_{q^{\prime}}(\varphi(x), \varphi(y))$ for every $x, y \in V$.

Deduce that: $x \perp y \Longleftrightarrow \varphi(x) \perp \varphi(y)$.
(2) Let U be a vector subspace of V. Show that $\varphi\left(U^{\perp}\right)=\varphi(U)^{\perp}$.
(3) Let $\psi:\left(V^{\prime}, q^{\prime}\right) \rightarrow\left(V^{\prime \prime}, q^{\prime \prime}\right)$ be another isometry. Show that the composition $\psi \circ \varphi:(V, q) \rightarrow\left(V^{\prime \prime}, q^{\prime \prime}\right)$ is also an isometry.
(4) Show that $O(V, q)=\{$ isometries of $(V, q)\}$ is a group. This group is called the orthogonal group of q.

Exercise 3. Let (V, q) be a quadratic form over a field F. Let $y \in V$ be an anisotropic vector (i.e. $q(y) \neq 0$). Recall that the reflection $\tau_{y}: V \rightarrow V$ is a linear map given by a formula

$$
\begin{equation*}
\tau_{y}(x)=x-\frac{2 B_{q}(x, y)}{q(y)} y \tag{1}
\end{equation*}
$$

for every $x \in V$, where B_{q} is the bilinear form associated to q.
Let now $x, y \in V$, such that $q(x)=q(y)$ and $q(x-y) \neq 0$. Using formula (1) show that the reflection τ_{x-y} sends x to y.

Exercise 4. Let F be a field. Recall that a quadratic form (V, q) represents $a \in F$ if there exists $v \in V, v \neq 0$, such that $q(v)=a$. We say that q is isotropic if it represents 0 .
(1) Let q be an isotropic quadratic form over F. Show that q represents every $a \in F$.
Hint: Let $v \in V, v \neq 0$, with $q(v)=0$. Choose $w \in V$, such that $B_{q}(v, w) \neq 0$ and consider $q(\alpha v+w)$, where $\alpha \in F^{\times}$.
(2) Show that a quadratic form f over F represents $a \in F^{\times}$if and only if the quadratic form $f \perp\langle-a\rangle$ is isotropic.

