Algebra

Übungsblatt 9

Prof. Dr. Markus Land Dr. Maksim Zhykhovich

WiSe 2022/2023 19.12.2022

Aufgabe 1. Sei L/K eine Galoiserweiterung mit $Gal(L/K) \simeq S_n$. Zeige: Es gibt genau einen Zwischenkörper $K \subset E \subset L$ mit |E:K|=2 und E/K ist Galois.

Aufgabe 2. Sei p eine Primzahl, $a \in \mathbb{Q} \setminus \mathbb{Q}^{*p}$ und L ein Zerfällungskörper des Polynoms $X^p - a$ über \mathbb{Q} . Zeige:

- (1) Die Menge $\mathbb{Z}/p\mathbb{Z} \times (\mathbb{Z}/p\mathbb{Z})^{\times}$ ausgestattet mit der Verknüpfung $(m,k) \cdot (m',k') :=$ (m+km',kk') ist eine Gruppe, geschrieben $\mathbb{Z}/p\mathbb{Z} \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- (2) Die Galois Gruppe $\operatorname{Gal}(L/\mathbb{Q})$ ist isomorph zu $\mathbb{Z}/p\mathbb{Z} \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}$. Hinweis: Benutze Aufgabe 3, Übungsblatt 7.

Aufgabe 3. Seien K ein Körper mit char $K \neq 2$ und $f \in K[X]$ ein separables Polynom vom Grad $n \geq 1$ mit Nullstellen $\alpha_1, \ldots, \alpha_n$ in einem algebraischen Abschluss \bar{K} von K. Wie immer fassen wir G als Untergruppe von S_n auf. Die Diskriminante von f ist wie folgt gegeben: $\operatorname{disc}(f) = \prod_{i < j} (\alpha_j - \alpha_i)^2$ in \bar{K} . Zeige:

- (1) $\operatorname{disc}(f) \in K$.
- (2) G ist eine Untergruppe von A_n genau dann wenn $\operatorname{disc}(f)$ ein Quadrat in K

Hinweis: Betrachte die Wirkung der Galoisgruppe auf $\prod_{i < j} (\alpha_j - \alpha_i)$.

Aufgabe 4. Berechne die Galoisgruppen der Zerfällungskörper folgender Polynome über \mathbb{Q} :

- a) $X^3 4X + 2$
- b) $X^3 3X + 1$

Hinweis: Benutze Aufgabe 3 und die Formel $\operatorname{disc}(X^3 + aX + b) = -4a^3 - 27b^2$.

Aufgabe 5. Sei p eine Primzahl, $n \ge 1$ und φ die Eulersche φ -Funktion. Zeige:

- (1) $\varphi(p^n) = p^{n-1}(p-1)$, und (2) $n = \sum_{d|n,d \ge 1} \varphi(d)$.