Algebra

Übungsblatt 3

Prof. Dr. Markus Land Dr. Maksim Zhykhovich WiSe 2022/2023 07.11.2022

Aufgabe 1. 1)Zeige: $\mathbb{Z}[i]$ ist ein euklidischer Ring mit $\delta(a+bi) = N(a+bi) = a^2 + b^2$. Hier sind $a, b \in \mathbb{Z}$.

Hinweis: Seien $u, v \in \mathbb{Z}[i]$. Wir suchen $q, r \in \mathbb{Z}[i]$ mit $\delta(r) < \delta(v)$, sodass u = vq + r. Betrachte $q' = \frac{u}{v} \in \mathbb{C}$ and wähle $q \in \mathbb{Z}[i]$ mit N(q - q') < 1. Setze dann r = u - vq.

2) Zeige: $\mathbb{Z}[i]^* = \{\pm 1, \pm i\}.$

Hinweis: Man beobachtet dass $N(z_1z_2) = N(z_1)N(z_2)$ für alle $z_1, z_2 \in \mathbb{Z}[i]$ gilt, wobei wieder $N(a+bi) = a^2 + b^2$.

3) Sei $\pi = a + bi$ ein Primelement in $\mathbb{Z}[i]$.

Zeige: Bis auf Einheiten ist π entweder eine Primzahl aus \mathbb{Z} oder $a^2 + b^2$ ist eine Primzahl aus \mathbb{Z} .

Hinweis: Bemerke dass $\bar{\pi} = a - bi \in \mathbb{Z}[i]$ auch ein Primelement ist und betrachte $N(\pi) = \pi \bar{\pi}$. Benutze dann, dass $\mathbb{Z}[i]$ ein euklidischer und damit auch ein faktorieller Ring ist.

Aufgabe 2. 1) Sei p eine Primzahl aus \mathbb{Z} von der Form $p = 3 \mod 4$.

Zeige: p ist auch ein Primelement in $\mathbb{Z}[i]$.

2) Sei p eine Primzahl aus \mathbb{Z} von der Form $p=1 \mod 4$ oder p=2.

Zeige: p ist nicht prim in $\mathbb{Z}[i]$ und es gibt $a, b \in \mathbb{Z}$ mit $p = a^2 + b^2$.

Hinweis: Zeige dass es $m \in \mathbb{Z}$ mit $m^2 = -1 \mod p$ existiert. Schreibe $m^2 + 1 = pl$ in \mathbb{Z} und bemerke dass $m^2 + 1 = (m + i)(m - i)$ in $\mathbb{Z}[i]$.

3) Beschreibe alle Primelemente in $\mathbb{Z}[i]$.

Aufgabe 3. (1) Sei R ein endlicher Integritätsbereich.

Zeige: R ist ein Körper.

(2) Sei A ein endlicher Ring.

Zeige: Jedes Primideal in A ist maximal.

Aufgabe 4. Sei R ein kommutativer Ring mit 1. Sei $x \in R$ mit $x^n = 0$ für ein $n \in \mathbb{N}$ (Ein solches Element x heißt nilpotent). Zeige: $1 + x \in R^*$.