Algebra 2

Tutorium 9

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	22.06.2023

Exercise 1. We know from the lecture that \mathbb{Q} is flat over \mathbb{Z} . Show that \mathbb{Q} is not faithfully flat over \mathbb{Z} .

Exercise 2. Let p, q be two different prime numbers. Consider $\mathbb{Z}/(p)$ as a module over $\mathbb{Z}/(pq)$. Show that $\mathbb{Z}/(p)$ is projective but not faithfully flat.

Exercise 3. Let R be a commutative ring, $S \subset R$ a multiplicatively closed subset. Show that $S^{-1}R = 0$ if and only if $0 \in S$.

Exercise 4. Let R be a commutative ring, $S \subset R$ a multiplicatively closed subset. Let $\varphi: R \to S^{-1}R$, $a \mapsto \frac{a}{1}$, be the canonical ring homomorphism.

Show that φ is an isomorphism if and only if $S \subset \mathbb{R}^{\times}$.

Remark: Give two proofs: one, by directly showing that φ is injective and surjective if and only if $S \subset R^{\times}$, and another proof by using the universal property of $S^{-1}R$.

Exercise 5. Let R be a commutative ring, $S \subset R$ a multiplicatively closed subset and $I \subset R$ an ideal of R. Let $\varphi : R \to S^{-1}R$, $a \mapsto \frac{a}{1}$, be the canonical ring homomorphism.

(1) Show that $S^{-1}I := \{\frac{i}{s} \mid i \in I, s \in S\} \subset S^{-1}R$ is an ideal in $S^{-1}R$. (2) Show that the ideal in $S^{-1}R$ generated by the set $\varphi(I)$ is equal to $S^{-1}I$.

(3) Assume I is prime in R and $I \cap S = \emptyset$. Show that $S^{-1}I$ is prime in $S^{-1}R$.