Algebra 2

Tutorium 7

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	09.06.2023

Exercise 1. Let A be a commutative ring and let

 $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$

be an exact sequence of A-modules. Show that the following conditions are equivalent:

(1) There exists an A-linear map $i: M \to M'$ such that $i \circ f = id_{M'}$.

(2) There exists an A-linear map $j: M'' \to M$ such that $g \circ j = id_{M''}$.

(3) There exists an isomorphism $h: M \to M' \oplus M''$, such that $h \circ f$ is a natural injection of M' into the direct sum, and $g \circ h^{-1}$ is the natural projection of the direct sum onto M''.

Remark: The exact sequence satisfying one of the above conditions is called *split*.

Exercise 2. Let $R = \mathbb{Z}[\sqrt{-5}]$ and $I = (2, 1 + \sqrt{-5})$ an ideal of R. (1) Show that I is projective over R. *Hint:* Show that I is a retract (direct summand) of R^2 by considering the map $I \to R^2, a \mapsto (-a, (\frac{1-\sqrt{-5}}{2})a)$. (2) Show that I is not free as R-module.

Exercise 3. Let R be a commutative ring. Let $I \subset R$ be a finitely generated ideal of R, such that $I = I^2$. Show that I is principal and generated by an idempotent (that is I = (e), where $e^2 = e$).

Exercise 4. Let R be a commutative ring, $I \subset R$ a finitely generated ideal of R. Show that the following conditions are equivalent:

(1) R/I is flat over R.

(2) I is principal and generated by an idempotent.

(3) R/I is projective over R.