Algebra 2

Tutorium 7

Prof. Markus Land
Dr. Maksim Zhykhovich
09.06.2023

Exercise 1. Let A be a commutative ring and let

$$
0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0
$$

be an exact sequence of A-modules. Show that the following conditions are equivalent:
(1) There exists an A-linear map $i: M \rightarrow M^{\prime}$ such that $i \circ f=i d_{M^{\prime}}$.
(2) There exists an A-linear map $j: M^{\prime \prime} \rightarrow M$ such that $g \circ j=i d_{M^{\prime \prime}}$.
(3) There exists an isomorphism $h: M \rightarrow M^{\prime} \oplus M^{\prime \prime}$, such that $h \circ f$ is a natural injection of M^{\prime} into the direct sum, and $g \circ h^{-1}$ is the natural projection of the direct sum onto $M^{\prime \prime}$.
Remark: The exact sequence satisfying one of the above conditions is called split.

Exercise 2. Let $R=\mathbb{Z}[\sqrt{-5}]$ and $I=(2,1+\sqrt{-5})$ an ideal of R.
(1) Show that I is projective over R.

Hint: Show that I is a retract (direct summand) of R^{2} by considering the map $I \rightarrow R^{2}, a \mapsto\left(-a,\left(\frac{1-\sqrt{-5}}{2}\right) a\right)$.
(2) Show that I is not free as R-module.

Exercise 3. Let R be a commutative ring. Let $I \subset R$ be a finitely generated ideal of R, such that $I=I^{2}$. Show that I is principal and generated by an idempotent (that is $I=(e)$, where $e^{2}=e$).

Exercise 4. Let R be a commutative ring, $I \subset R$ a finitely generated ideal of R. Show that the following conditions are equivalent:
(1) R / I is flat over R.
(2) I is principal and generated by an idempotent.
(3) R / I is projective over R.

