Algebra 2

Tutorium 6

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	01.06.2023

Exercise 1. Let A be a commutative ring, M, N two A-modules. Assume that N is free with A-basis $\{n_i\}_{i \in I}$.

a) Show that:

$$\sum_{i \in I} m_i \otimes n_i = 0 \text{ in } M \otimes_A N \iff m_i = 0 \text{ for all } i \in I,$$

where $m_i \in M$ and $m_i \neq 0$ only for finitely many $i \in I$. *Hint:* Find an appropriate A-linear morphisms $f: M \to M'$ and $g: N \to N'$ and apply $f \otimes g$.

b) Show that every free A-module is flat over A.

c) Assume that M is also free with A-Basis $\{m_j\}_{j \in J}$. Show that: $M \otimes_A N$ ist a free A-module with basis $\{m_j \otimes n_i \mid j \in J, i \in I\}$.

Exercise 2. Let A be a commutative ring, M a flat A-modules, a an element in A which is not zero divisor. Assume am = 0 for some $m \in M$. Show that m = 0.

Exercise 3. Let A be a commutative ring and let

 $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$

be an exact sequence of A-modules. Show that the following conditions are equivalent:

1) There exists an A-linear map $i: M \to M'$ such that $i \circ f = id_{M'}$.

2) There exists an A-linear map $j: M'' \to M$ such that $g \circ j = id_{M''}$.

3) There exists an isomorphism $h: M \to M' \oplus M''$, such that $h \circ f$ is a natural injection of M' into the direct sum, and $g \circ h^{-1}$ is the natural projection of the direct sum onto M''.