Algebra 2

Tutorium 11

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	13.07.2023

Let R be a commutative ring and M an R-module. The support of M is the set $\operatorname{Supp}(M) := \{ \rho \in \operatorname{Spec} \left(R \right) \mid M_{\rho} \neq 0 \}.$

The annihilator of M is the following ideal in R

 $Ann(M) := \{ x \in R \mid xM = 0 \}.$

Exercise 1. Let R be a commutative ring, S a multiplicatively closed subset of R and let M be an R-module.

Show that:

(1) $S^{-1}M = 0$ if $\operatorname{Ann}(M) \cap S \neq \emptyset$.

(2) Assume that M is finitely generated. Show that

$$S^{-1}M = 0 \iff \operatorname{Ann}(M) \cap S \neq \emptyset.$$

(3) Show that $\operatorname{Supp}(M) \subseteq V(\operatorname{Ann}(M))$.

(4) Show that Supp(M) = V(Ann(M)) if M is finitely generated.

(5) Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of *R*-modules.

Show that $\operatorname{Supp}(M) = \operatorname{Supp}(M') \cup \operatorname{Supp}(M'')$.

(6) Let \mathfrak{m} be a maximal ideal of R. Show that $\operatorname{Supp}(R/\mathfrak{m}) = \{\mathfrak{m}\}.$

Exercise 2. Let B be an integral domain and A a subring of B such that B is integral over A. Show that B is a field if and only if A is a field.

Exercise 3. Show that the ring $\mathbb{Z}[X]/(X^2-3)$ is integral over \mathbb{Z} , and that the ring $\mathbb{Z}[X]/(2X^2-3)$ is not integral over \mathbb{Z} .

More generally, let A be an integral domain and $P(X) \in A[X]$ a polynomial. Show that A[X]/(P(X)) is integral over A if and only if the leading coefficient of P(X) is a unit in A (an element in A is called a unit if it is invertible in A).