Algebra 2

Tutorium 10

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	06.07.2023

Exercise 1. Let R be a commutative ring, $S \subset R$ a multiplicatively closed subset of R.

(1) Show that $S^{-1}\mathcal{N}_R = \mathcal{N}_{S^{-1}R}$.

(2) Deduce from (1) that R is reduced if and only if $R_{\mathfrak{m}}$ is reduced for every maximal ideal \mathfrak{m} of R.

Exercise 2. Let K be a field and let n > 0 be an integer. Consider the ring $R = \prod_{i=1}^{n} K$. Recall that Spec $R = \{\mathfrak{m}_1, ..., \mathfrak{m}_n\}$, where $\rho_i = \varphi_i^{-1}(0)$ and $\varphi_i : R \to K$ is the projection to the *i*-th component (see Exercise 5.2, Exercise Sheet 2).

Show that $R_{\mathfrak{m}_i} \simeq K$ for every i = 1, ..., n.

Hint: Use the universal property of the localization $R_{\mathfrak{m}_i}$.

Remark: Note that R is a regular von Neumann ring and this exercise is a particular case of Exercise 1.1 (Exercise Sheet 10).

Exercise 3. Let R be a commutative ring. Let M be an Artinian R-module and $\varphi: M \to M$ an injective endomorphism. Show that φ is an isomorphism.

Exercise 4. Let R be an integral domain. For a prime ideal $\rho \in \operatorname{Spec} R$ we consider R_{ρ} as a subring in the quotient field Q(R) of R. Show that the following equality holds in Q(R):

$$R = \bigcap_{\rho \in \operatorname{Spec} R} R_{\rho}.$$