Algebra 2

Tutorium 1

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	27.04.2023

Exercise 1. Let \mathfrak{a} , \mathfrak{b} and \mathfrak{c} be ideals of a commutative ring A.

(1) Assume that \mathfrak{a} , \mathfrak{b} are coprime and \mathfrak{a} , \mathfrak{c} are also coprime. Show that \mathfrak{a} and $\mathfrak{b}\mathfrak{c}$ are coprime.

(2) Show that if \mathfrak{a} and \mathfrak{b} are coprime, then \mathfrak{a}^n and \mathfrak{b}^m are also coprime for any positive integers n and m.

Exercise 2. Let A be a commutative ring with exactly one maximal ideal $\mathfrak{m} \subseteq A$. Let x be an element in A, such that $x^2 = x$. Show that $x \in \{0, 1\}$.

Exercise 3. Let R be a Boolean ring, that is a ring in which $x^2 = x$ for every $x \in R$. Show that

(1) 2x = 0 for every $x \in R$.

(2) R is commutative.

(3) every prime ideal $I \subseteq R$ is maximal and $R/I \simeq \mathbb{Z}/2\mathbb{Z}$.

(4) Every finitely generated ideal in R is principal.