Algebra 2

Exercise Sheet 9

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	28.06.2023

Exercise 1. Let $R \neq 0$ be a commutative ring and Σ the set of all multiplicatively closed subsets S of R with $0 \notin S$. Show that:

a) Σ has a maximal element (with respect to inclusion).

b) $S \in \Sigma$ is maximal $\iff A \setminus S$ is a minimal prime ideal.

Exercise 2. Let R be a commutative ring and S a multiplicatively closed subset of R. Let M be an R-modules and N, P submodules of M. We consider $S^{-1}N$, $S^{-1}P$ as $S^{-1}R$ -submodules of $S^{-1}M$. Show that (1) $S^{-1}(N+P) = S^{-1}N + S^{-1}P$ (2) $S^{-1}(N \cap P) = S^{-1}N \cap S^{-1}P$ (3) $S^{-1}(M/N) \simeq S^{-1}M/S^{-1}N$ as $S^{-1}R$ -submodules.

Exercise 3. Let R be a commutative ring. Denote by Max(R) the set of maximal ideal of R. Show that the R-module

$$\bigoplus_{\mathfrak{m}\in\mathrm{Max}(R)}R_{\mathfrak{m}}$$

is faithfully flat.

Exercise 4. Let R be a commutative ring and S a multiplicatively closed subset of R. Let M be an R-module.

Consider S as a category with $\operatorname{Hom}(s,s') = \{x \in R \mid xs = s'\}$ for any $s, s' \in S$. Consider the following functor $F: S \to Mod(R), s \mapsto M_s := M$, which associate $x \in \operatorname{Hom}(s,s')$ to $\mu_x : M_s \to M_{s'}$, where μ_x is the multiplication by x (that is $\mu_x(m) = xm$). Show that the colimit of F is isomorphic to $S^{-1}M$ with maps $\alpha_s : M_s \to S^{-1}M, m \mapsto \frac{m}{s}$.