Algebra 2

Exercise Sheet 8

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	21.06.2023

Exercise 1. Let K be a field. Show that a finite subgroup G of the multiplicative group K^* is cyclic.

Hint: Consider the abelian group G as a \mathbb{Z} -module and use Corollary 6.76 from the lecture.

Exercise 2. Let R be a PID and M a finitely generated R-module. Recall that by Corollary 6.76 we have

$$M \simeq M' \oplus \bigoplus_{i=1}^m R/(a_i)$$

where M' is free of finite rank and $a_i \in R$ are non-zero and non-units with the divisibility relation $a_1 \mid a_2 \mid ... \mid a_m$. Show that the ideals $(a_i), i = 1, ..., m$, are uniquely determined by M.

Exercise 3. Consider the following \mathbb{Z} -module

$$M = \prod_{p \in \operatorname{Spec} (\mathbb{Z})} \mathbb{Z}/(p) \,.$$

(1) Describe the submodule Tors(M) of M.

(2) Show that Tors(M) is not a direct summand of M (that is M does not decompose as $\text{Tors}(M) \oplus M'$ for some submodule M' of M).

Remark: Note that the \mathbb{Z} -module M is not finitely generated and is not isomorphic to a direct sum of simple modules (compare to Corollary 6.76).

Exercise 4. Let R be a commutative ring and f an element in the intersection of all prime ideals of R. From the lecture we know that f is nilpotent (see Proposition 4.5).

Give another proof of this statement using localization. Hint: Consider R_f .

Exercise 5. Let R be a Noetherian ring and S any multiplicatively closed subset of R. Show that $S^{-1}R$ is Noetherian. *Remark:* The converse in general is not true.