Algebra 2

Exercise Sheet 6

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	07.06.2023

Exercise 1. Show that over a commutative ring every projective module is flat.

Exercise 2. Let R be a commutative ring and n, m positive integers. (1) Let M be a finitely generated R-module and $\varphi : M \to M$ a surjective R-linear map. Show that φ is an isomorphism. *Hint:* Consider M as an R[X]-module (via $F(X) \cdot m := F(\varphi)m$) and use Corollary 6.48 from the lecture. (2) Show that any n generators of the free module R^n form an R-basis. *Hint:* Use question (1). (3) Show that: $R^n \simeq R^m$ (as R-modules) implies n = m.

Exercise 3. Let K be a field, $V = \bigoplus_{i \in \mathbb{N}} K$ a K-vector space and $R = \operatorname{End}_K(V)$. Note that R is a ring, but not commutative. Show that: $R \simeq R^2$ as left R-modules.

Exercise 4. Let $K \subset L$ be a finite Galois field extension and $G = \operatorname{Gal}(L/K)$. Show that the map

$$L \otimes_K L \longrightarrow \prod_{\sigma \in G} L$$
$$a \otimes b \longmapsto (a \cdot \sigma(b))_{\sigma \in G}$$

is an isomorphism of *L*-algebras, where the *L*-algebra structure on $L \otimes_K L$ is given by the multiplication on the first factor.