Algebra 2

Exercise Sheet 5

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	23.05.2023

Exercise 1. Let R be a commutative ring, I an ideal of R and M an R-module. Show that there is a canonical isomorphism $R/I \otimes_R M \to M/IM$ of R/I-modules.

Exercise 2. Let A be a commutative ring, B a commutative A-algebra. (1) Show that: $B \otimes_A A[X] \simeq B[X]$ as *B*-algebras. (2) Let I be an ideal of A[X]. Show that $B \otimes_A (A[X]/I) \simeq B[X]/IB[X]$.

Exercise 3. Let A be a commutative ring, I, J ideals in A. We consider $\mathbb{Q}[y]$ as $\mathbb{Q}[x]$ -algebra via the homomorphism $\mathbb{Q}[x] \to \mathbb{Q}[y], x \mapsto y^2$. Compute explicitly the following tensor products:

a) $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}$ b) $\mathbb{Q}(\sqrt{2}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{2})$ c) $\mathbb{Q}(\sqrt[3]{2}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt[3]{2})$ d) $A/I \otimes_A A/J$ e) $\mathbb{Q}[y] \otimes_{\mathbb{Q}[x]} \mathbb{Q}[x]/(x)$ f) $\mathbb{Q}[y] \otimes_{\mathbb{Q}[x]} \mathbb{Q}[x]/(x-1)$ g) $\mathbb{Q}[y] \otimes_{\mathbb{Q}[x]} \mathbb{Q}[x]/(x+1)$

Exercise 4. Consider a commutative diagram

A	\xrightarrow{f}	$B \xrightarrow{g}$	$C \xrightarrow{h}$	D
$\downarrow l$		$\int m$	$\downarrow n$	\downarrow^p
A'	$\xrightarrow{f'}$	$B' \xrightarrow{g'}$	$C' \xrightarrow{h'}$	D'

of *R*-modules and *R*-linear maps in which the rows are exact. Suppose m and pare injective and l is surjective.

Show: n is injective.