Algebra 2

Exercise Sheet 4

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	16.05.2023

Exercise 1. Let $C \subseteq \mathbb{C}[T]$ be the sub \mathbb{C} -algebra generated by T^2 and T^3 . Show that C is not isomorphic to $\mathbb{C}[X]$. *Hint*: Show that C is not a PID.

Exercise 2. Let R be a commutative ring and M an R-module. Show that the scalar multiplication map $R \to \operatorname{End}_{\mathbb{Z}}(M)$ factors through the forgetful map $\operatorname{End}_R(M) \to \operatorname{End}_{\mathbb{Z}}(M)$, that is, scalar multiplication by an element of R determines an R-linear endomorphism ℓ_r of M. Moreover, show that the image of R in $\operatorname{End}_R(M)$ consists of central elements, that is, for all $r \in R$ and $f \in \operatorname{End}_R(M)$, we have $\ell_r \circ f = f \circ \ell_r$.

Exercise 3. Let R be a commutative ring and let M and N be Noetherian R-modules. Show that $M \oplus N$ is again Noetherian.

Exercise 4. Let R and S be commutative rings. Show that the category Mod(R) admits all small limits and colimits, and that for any ring homomorphism $S \to R$, the restriction of scalars functor $Mod(R) \to Mod(S)$ commutes with all small limits and colimits.

Exercise 5. Let \mathcal{C} be a category with finite coproducts and finite products in which the initial object is terminal. Let I be a finite set and for each $i \in I$, let X_i be an object of \mathcal{C} .

- (1) Construct a canonical map $\coprod_{i \in I} X_i \to \prod_{i \in I} X_i$, such that this map is an isomorphism if $\mathcal{C} = \operatorname{Mod}(R)$ for R a commutative ring.
- (2) Assume that the map of (1) are isomorphisms. Show that for all objects X, Y of \mathcal{C} , $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ carries a canonical structure of an abelian monoid and that composition with a morphism in \mathcal{C} is a monoid homomorphism.