Algebra 2

Exercise Sheet 3

Prof. Markus Land	Summer Semester 2023
Dr. Maksim Zhykhovich	09.05.2023

Exercise 1. Show that the ring $\{P \in \mathbb{Q}[X] \mid P(0) \in \mathbb{Z}\}$ is not Noetherian.

Exercise 2. Let A be a commutative ring.

- (1) Show that the set $S = \{I \subseteq R \mid I \text{ not finitely generated ideal }\}$ is either empty or contains a maximal element.
- (2) Show that A is Noetherian if and only if every prime ideal in A is finitely generated.

Exercise 3. Let R be a commutative ring and $f = a_0 + a_1 X + ... + a_n X^n \in R[X]$. Show that

(1) $f \in R[X]^{\times} \iff a_0 \in R^{\times} \text{ and } a_1, ..., a_n \in \mathcal{N}_R.$ *Hint:* Let $f^{-1} = b_0 + b_1 X + ... + b_m X^m$. Show that $a_n^{i+1} b_{m-i} = 0$ for every i = 0, 1, ..., m.(2) $f \in \mathcal{N}_{R[X]} \iff a_0, a_1, ..., a_n \in \mathcal{N}_R.$

Exercise 4. Let K be a field and $n \ge 1$. Show that there are infinitely many irreducible elements (even up to units) in $K[X_1, \ldots, X_n]$.

Exercise 5. Let A be a commutative ring and \mathfrak{a} a strict ideal of A. Show that

$$\sqrt{\mathfrak{a}} = \bigcap \{ \mathfrak{p} \in \operatorname{Spec}_{\operatorname{rab}}(A) \mid \mathfrak{a} \subseteq \mathfrak{p} \}.$$