Algebra 2

Exercise Sheet 1

Prof. Markus Land
Summer Semester 2023
Dr. Maksim Zhykhovich
Exercise 1. Let \mathfrak{a} and \mathfrak{b} be two ideals of a commutative ring A.
(1) Show that $\mathfrak{a b} \subseteq \mathfrak{a} \cap \mathfrak{b}$.
(2) Assume that \mathfrak{a} and \mathfrak{b} are coprime (that is $\mathfrak{a}+\mathfrak{b}=A$). Show that $\mathfrak{a b}=\mathfrak{a} \cap \mathfrak{b}$.
(3) Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}$ be pairwise coprime ideals in A. Show that $\prod_{i=1}^{n} \mathfrak{a}_{i}=\bigcap_{i=1}^{n} \mathfrak{a}_{i}$.

Exercise 2. Let I and J be two ideals of a commutative ring A and $\pi: A \rightarrow A / I$ the canonical projection. Show that $\pi(J)$ is an ideal in A / I and

$$
(A / I) / \pi(J) \simeq A /(I+J) .
$$

Exercise 3. Let p be a prime number.
(1) Show that -1 is not a square in \mathbb{F}_{p} if and only if $p=3 \bmod 4$.

Remark: See Aufgabe 1, Tutoriumsblatt 3 (Algebra 1).
(2) Let $\mathbb{Z}[i]$ be the ring of Gaussian intergers. Show that the ideal (p) is prime if and only if $p=3 \bmod 4$.
Hint: Consider the quotient ring $\mathbb{Z}[i] /(p)$, observe that $\mathbb{Z}[i] \simeq \mathbb{Z}[X] /\left(X^{2}+1\right)$ and use Exercise 2 and question (1).

Exercise 4. Show that every prime ideal \mathfrak{p} in $\mathbb{Z}[X]$ has one of the following form
(1) $\mathfrak{p}=(0)$.
(2) $\mathfrak{p}=(p)$, where p is a prime number.
(3) $\mathfrak{p}=(f)$, where f is an irreducible polynomial in $\mathbb{Z}[X]$.
(4) $\mathfrak{p}=(p, f)$, where p is a prime number and f a polynomial in $\mathbb{Z}[X]$ irreducible modulo p.

Hint: Show that $\mathfrak{p} \cap \mathbb{Z}$ is a prime ideal in \mathbb{Z} and consider two cases: $\mathfrak{p} \cap \mathbb{Z} \neq(0)$ and $\mathfrak{p} \cap \mathbb{Z}=(0)$.

