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1. Introduction

The purpose of this lecture is to, on the one hand, introduce and study several properties
of commutative rings, ideal, and modules, and on the other hand to use this language to
prepare for the lectures on algebraic geometry and algebraic number theory.

In particular, we will introduce several notions which will be studied in greater depth in
algebraic geometry (like the Zariski spectrum of a commutative ring). Among the topics cov-
ered are Noetherian rings, Hilbert’s Nullstellensatz, some aspects of affine algebraic geometry,
basic properties of modules and the particular the classification of finitely generated mod-
ules over principal ideal domains, dimension theory and Artinian rings, integral extensions,
Noether’s normalization theorem, discrete valuation rings and more generally Dedekind rings.

We now briefly touch on some aspects of the relation between commutative algebra and
algebraic geometry and algebraic number theory.

1.1. Algebraic Geometry. Basic interesting mathematical objects are polynomials: For
instance any polynomial R[X1, . . . , Xn] defines a smooth function Rn → R, something studied
in analysis. One may be interested in the set f−1(0), i.e. the set of solutions of the equation
f(x) = 0. For instance, the implicit function theorem tells us that if 0 is a regular value, then
f−1(0) defines a smooth submanifold of Rn (if 0 is not regular, then this solution set typically
has singularities). In either case, it is interesting to study the function f by studying the
geometry (or topology) of the solution set. Particular cases are when f is a polyonmial with
integer coefficients. The integral polynomial ring Z[X1, . . . , Xn] maps to K[X1, . . . , Xn] for
any field K (in fact for any other ring K) and one can again study the set of solutions of the
resulting polynomial equations over K, viewed as subsets of affine n-space An

K over K, and
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it might be worthwhile to study some sort of geometry of solution sets of integral polynomial
equations over different fields.

In classical algebraic geometry, one would consider an algebraically closed field K (this
for instance ensures that polynomial equations have solutions). So for ease of presentation
let us consider the case K = C. A typical example for instance could be the polynomial
X2 − X2

1 ∈ C[X1, X2]. Its solution set is given by V = {(a, b) ∈ C2 | b = a2}. Now, what
should an “algebraic” function on this solution set be? An easy answer is to simply say it
should be a polynomial function C2 → C, and then we restrict this function to the solution
set V . Fair enough. But then it turns out that some functions are zero on the solution set,
but not zero outside of it (for instance the function X2 − X2

1 itself). So let us consider the
relation among polynomials in C[X1, X2] given by saying that two are equivalent if they agree
on V , or equivalently, that their difference vanishes on V . In the case of interest, this turns
out to be precisely the condition that the difference lies in the ideal (X2 − X2

1 ) ⊆ C[X,Y ].
We hence arrive at the observation that the ring of algebraic functions on V should be the
quotient ring C[X1, X2]/(X2 −X2

1 ).
This leads to the following idea: Given an ideal I ⊆ C[X1, . . . , Xn] consider the vanishing

set V (I) of all points x in Cn such that for all f ∈ I, we have f(x) = 0. This defines a subset
of Cn, the intersection of all solution sets of all elements in I. By analogy to the above, an
algebraic function is then precisely an element in O(V (I)) = C[X1, . . . , Xn]/I(V (I)), where
I(V (I)) is the ideal of polynomials which vanish on V (I). Clearly, one has I ⊆ I(V (I)) and
one formulation of Hilbert’s Nullstellensatz is that for any ideal I ⊆ K[X1, . . . , Xn] and any
algebraically closed field K, one has

I(V (I)) = {x ∈ C[X1, . . . , Xn] | xn ∈ I for some n ≥ 1}.

The latter in the above equation is called the radical of I and is also denoted by
√
I. We will

study several equivalent formulations of Hilbert’s Nullstellensatz in this course.
The upshot is that radical ideals (that is ideals I which agree with their radical

√
I) in

C[X1, . . . , Xn] correspond bijectively to certain subsets of Cn equipped with a ring of algebraic
functions on them, which are called affine varieties. The bijection is given by sending an ideal
I to the vanishing set V (I) and conversely by sending a variety V ⊆ Cn to its ring of algebraic
functions O(V ). Now, ideals in rings like C[X1, . . . , Xn] are the topic of commutative algebra,
whereas varieties (and generalizations thereof) are the topic of algebraic geometry. By the
just described bijective correspondence, one can try to use algebra to say something about
the geometry of the solution sets, or vice versa use the geometry of varieties to say something
about their rings of functions.

1.2. Algebraic Number Theory. One of the initial goals of algebraic number theory is
to study number fields, i.e. finite field extensions of Q. Such finite extensions K/Q have
subrings OK (the rings of “integers” in K): Recall that every element in K is a root of a
monic polynomial with coefficients in Q (that is, any finite extension is algebraic). Say that
an element x of K lies in OK if it is a root of a monic polynomial with coefficients in Z. By
the Gauss lemma, we have OQ = Z, and the inclusions Z ⊆ OK are ring theoretic analogs
of algebraic field extensions (called integral ring extensions) and OK is always what is called
a Dedekind domain. Now, Z is a euclidean ring, and last term we have shown the following
inclusions:

{Euclidean rings} ⊆ {PIDs} ⊆ {factorial rings}
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Given a number field K, it is an interesting question in number theory to decide what further
properties OK has, e.g. is it any of the above? For instance, for K = Q[

√
−5], one finds

OK = Z[
√
−5] which is not factorial, whereas for K = Q[

√
−3] we have OK = Z[1+

√
−3

2 ]
which is Euclidean.

One can associate to rings A like OK (and therefore to a number field) two abelian groups:
the Picard group Pic(A) the Picard group (having to do with line bundles over a geometric
object associated to A) and the class group Cl(A) (having to do with invertible fractional
ideals of A). One can then prove an isomorphism Pic(A) ∼= Cl(A). It turns out that for a
number field K the class group Cl(OK) is a finite group and which is trivial if OK is factorial.
Studying the class group of a number field is a very interesting and difficult problem. For
instance, the following is an open question:

Is the set {d ≥ 0 | Cl(OQ[
√
d]) = 0} finite?

For d ≤ 0, the corresponding set is in fact finite, more explicitly Gauss conjectured, and Stark
(1952, and later Heegner in 1967) proved that

{d < 0 | Cl(OQ[
√
d]) = 0} = {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

The relation between the class group and the Picard group is also a first connection between
number theory and algebraic K-theory, a relation which in fact goes much much deeper.

2. Rings and ideals

2.1. Definition A ring consists of a set A equipped with monoid structures (+, 0) (addition)
and (·, 1) (multiplication) such that

(1) (A,+, 0) is an abelian group, and
(2) multiplication distributes over addition, that is, for all x, y, z ∈ A we have

z · (x+ y) = z · x+ z · y and (x+ y) · z = x · z + y · z.

We will often write xy instead of x · y. The ring A is called commutative if (A, ·, 1) is
commutative, i.e. if xy = yx holds for all elements x and y of A.

2.2. Remark We do not require that 1 ̸= 0. However, if 1 = 0, then for any a in A, we have
a = 1 · a = 0 · a = 0. In other words, A = {0} is the only ring in which 1 = 0.

2.3. Example The integers Z is a commutative ring. Any field K is a commutative ring.
Given a commutative ring A and a set M , there exists a polynomial ring A[Xm;m ∈ M ]. If
|M | = n, then this is (isomorphic to) the usual polynomial ring A[X1, . . . , Xn] in n variables,
and in general it is the filtered colimit over the polynomial rings associated to finite subsets of
M . Recall that the polynomial ring comes equipped with a map of sets ιM : M → A[Xm;m ∈
M ] given by sending m to Xm, as well as with a map of rings ιA : A→ A[Xm;m ∈M ].

2.4. Definition A ring homomorphism f : A→ B is a map which is a monoid homomorphism
with respect to addition and multiplication. That is, one has

f(0) = 0, f(x+ y) = f(x) + f(y), f(1) = 1, andf(xy) = f(x)f(y).

We write CAlg for the category of commutative rings.
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2.5. Remark (1) The condition f(0) = 0 follows from f(x+ y) = f(x) + f(y) since with
respect to addition, a ring is a group. Likewise, it follows that f(−x) = −f(x).

(2) The notation CAlg comes from the fact that the category of commutative rings is
in fact given by the category CAlg(Ab,⊗) of commutative algebra objects in the
symmetric monoidal category of abelian groups (with respect to tensor product of
abelian groups). We will come to tensor products in the more general context of
modules over rings later.

(3) We recall that the polynomial ring A[Xm;m ∈ M ] satisfies the following universal
property: For any commutative ring B, the map

HomCAlg(A[Xm;m ∈M ], B) −→ HomCAlg(A,B)×HomSet(M,B)

induced by ιA and ιM is a bijection.

2.6. Definition Let A be a ring. A subset S ⊆ A is a subring if 0, 1 ∈ S, and if for any
x, y ∈ S we have that −x, x+ y and xy are contained in S as well.

2.7. Remark The inclusion of a subring S ⊆ A is a ring homomorphism. If f : A → B is a
ring homomorphism, then f(A) ⊆ B is a subring.

2.8. Definition Let A be a commutative ring. A pair (B,φ) consisting of a commutative
ring B and a ring homomorphism φ : A→ B is called an A-algebra. The map φ is called the
structure morphism of the A-algebra B and is often omitted from the notation. A morphism
of A-algebras is a map B → B′ in CAlg compatible with the A-algebra structure morphisms,
that is a ring homomorphism making the diagram

A B′

B

commutative.

2.9. Remark (1) In other words, we have that the category CAlgA of commutative A-
algebras is equivalent to the slice category CAlgA/ of objects of CAlg under A.

(2) The map ιA : A → A[Xm;m ∈ M ] makes the polynomial ring A[Xm;m ∈ M ] an
A-algebra. Point (3) of Remark 2.5 then gives the following universal property of the
polynomial ring among A-algebras: Namely, the map

HomCAlgA(A[Xm;m ∈M ], B) −→ HomSet(M,B)

induced by ιM is a bijection. This means that the association M 7→ A[Xm;m ∈ M ]
assembles into a left adjoint of the forgetful functor CAlgA → Set given by sending an
A-algebra B to the set underlying the commutative ring B. One therefore says that
A[Xm;m ∈M ] is the free commutative A-algebra on the set M .

2.10. Definition Let A be a commutative ring. A subgroup a ⊆ A (under addition) is called
an ideal if for all a ∈ a and x ∈ A we have ax ∈ a. An ideal a strictly contained in A (that is
a ̸= A) is called strict.
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2.11. Example Let f : A→ B be a morphism in CAlg. Then ker(f) ⊆ A is an ideal. It is a
strict ideal if and only if B ̸= 0.

The following lemma was proven last term.

2.12. Lemma Let A be a commutative ring and a ⊆ A an ideal. Then the quotient ring
A/a comes equipped with a canonical projection map πa : A → A/a. This map satisfies the
following universal property, namely that the map

HomCAlg(A/a, B) −→ HomCAlg(A,B)

is injective and its image consists of those ring homomorphisms f : A→ B for which ker(f) ⊆
a.

2.13. Remark As any ideal, a ⊆ A is a subgroup under addition. Since the addition is com-
mutative, this subgroup is normal. The underlying abelian group of A/a (under addition) is
then the usual quotient group. The defining property of ideals ensures that the multiplication
of A descends to a well-defined multiplication on A/a and this turns A/a into a commutative
ring. In particular, we have ker(πa) = a. Consequently, we deduce that a surjective ring

homomorphism f : A→ B induces an isomorphism of rings A/ ker(f)
∼=→ B.

2.14. Lemma Let f : A→ B be a ring homomorphism. If b is an ideal of B, then f−1(b) is
an ideal of A. If f is surjective, and a is an ideal of A, then f(a) is an ideal of B.

Proof. Exercise. □

Let us notice that the set of ideals a of A is a partially ordered set (by inclusion).

2.15. Corollary Let A be a commutative ring and a an ideal of A. The association

{b ⊆ A/a | b ideal } π−1
a−→ {b ⊆ A | b ideal s.t. a ⊆ b}

is an isomorphism of partially ordered sets.

Proof. First, we note that the map π−1
a from ideals of A/a to ideals of A preserves the partial

orders. It then follows that a = π−1
a (0) ⊆ π−1

a (b) for all ideals b of A/a. The map is therefore
a well-defined map of posets (partially ordered sets). It remains to see that it is bijective. For
this, we note that an inverse is given by sending b to πa(b). □

2.16. Definition Let A be a commutative ring.

(1) A unit of A is an element which is a unit in the multiplicative monoid of A. That
is, it is an element a such that there exists b in A with ab = 1. We write A× for the
group of units (under multiplication) of A.

(2) A field is a commutative ring K ̸= 0 such that K× = K \ {0}.
(3) An element a of A is called a zero-divisor if there exists b in A such that ab = 0.
(4) A ̸= 0 is called a domain (sometimes als an integral domain) if 0 is the only zero-

divisor of A.

Exercise. (1) Given a in A, there exists at most one element b with ab = 1. Hence, for
a unit, we write a−1 for this unique element and call it the inverse of a.

(2) A non-zero commutative ring is a domain if and only if the map ℓa : A → A, with
ℓa(b) = ab is injective for all a ̸= 0.
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(3) A non-zero commutative ring is a field if and only if the map ℓa : A → A is bijective
for all a ̸= 0.

2.17. Definition Let A be a commutative ring, M ⊆ A a subset and {ai}i∈I , a and b (a
family of) ideals of A.

(1) The intersection
⋂

i∈I ai is an ideal, called the intersection of the ideals ai. In partic-
ular a ∩ b is an ideal of A.

(2) the subset a+ b = {a+ b | a ∈ a, b ∈ b} is an ideal, the sum of the ideals a and b.
(3) the ideal (M) =

⋂
M⊆I⊆A I where I ranges through ideals of A containing M is the

ideal spanned by the set M .
(4) the ideal a · b := ({ab | a ∈ a, b ∈ b}) ⊆ A is the product of the ideals a and b.

2.18. Example Consider the ring Z with ideals (n) and (m) generated by integers n and m.
Then

(n) ∩ (m) = lcm(m,n), (n) + (m) = gcd(m,n) and (n)(m) = (nm).

In particular, (n) ∩ (m) = (n)(m) if and only if lcm(n,m) = nm and (n) + (m) = (1) if and
only if gcd(n,m) = 1.

This “in particular” is true more generally for principal ideals (that is ideals generated by
a single element) in factorial rings.

Exercise. For ideals a and b of a commutative ring A, one has the following properties:

(1) ab ⊆ a ∩ b,
(2) (a+ b)(a ∩ b) = a(a ∩ b) + b(a ∩ b) ⊆ ab, and
(3) a+ b = A implies that a ∩ b = ab.

2.19. Lemma Let A ̸= 0 be a commutative ring. TFAE (the following are equivalent)

(1) A is a field,
(2) the only ideals of A are {0} and A,
(3) for every B ̸= 0, every ring homomorphism f : A→ B is injective.

Proof. (1) ⇒ (2): Let a ⊆ A be a non-zero ideal. Then it contains a unit (A is a field), and
therefore 1, so that a = A. (2)⇒ (3): We have f(1) = 1. Therefore (by the assumption that
B ̸= 0), we have ker(f) ̸= A, so we have ker(f) = {0} (the kernel is an ideal) and therefore f
is injective. (3) ⇒ (1): Let 0 ̸= a be an element of A. We need to show that a is a unit, or
equivalently that the ideal (a) spanned by a is equal to A. Consider the ring map A→ A/(a).
This map is not injective since a ̸= 0. Hence A/(a) must be zero and hence (a) = A as
needed. □

2.20. Definition Let A be a commutative ring and a and b ideals of A. We say that a and b
are coprime if a+ b = A.

The following is the Chinese remainder theorem. We have proven it last term.

2.21. Theorem Let A be a commutative ring, and a1, . . . , an pairwise coprime ideals. Then
the canonical map

A −→
n∏

i=1

A/ai
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is surjective. Its kernel is given by the intersection ∩iai of the ideals ai, and therefore, the
above canonical map induces an isomorphism

A/

n⋂
i=1

ai ∼=
n∏

i=1

A/ai.

2.22. Example (1) Consider Z and m ≥ 2. Write m = pn1
1 · · · p

nk
k with pairwise distinct

prime numbers pi. Then, for i ̸= j, the ideals (pni
i ) and (p

nj

j ) are coprime (exercise).
By the chinese remainder theorem, the map

Z −→
k∏

i=1

Z/pni
i Z

is surjective and its kernel is given by (m) as follows from part (3) of the above exercise
together with Example 2.18. In other words, the above map induces an isomorphism

Z/mZ ∼=
k∏

i=1

Z/pni
i Z.

(2) Let K be a field and K[X] the polynomial ring. Recall that this ring is a euclidean
domain and hence in particular factorial. That is polynomial of positive degree can
be written as a product of irreducible polynomials. Now let f ∈ K[X] be of positive
degree and write f = fn1

1 · · · f
nk
k with pairwise distinct irreducible polynomials fi.

Then the same argument as above shows that there is a canonical isomorphism

K[X]/(f) ∼=
k∏

i=1

K[X]/(fni
i ).

Exercise. The purpose of this exercise is to deduce the generalized eigenspace decomposition
one proves in linear algebra 2. Let V be finite dimensional K-vector space and let φ : V → V
be an endomorphism of V . Let f ∈ K[X] be the minimal polynomial of φ and assume that
it factors into linear terms (this is automatic for instance if K is algebraically closed) and

write f =
k∏

i=1
(X − λi)

ni where the λi’s are the distinct eigenvalues of f . Show that there is a

canonical isomorphism

V ∼=
k∏

i=1

ker[(f − λi · id)ni ].

2.23. Definition Let A be a commutative ring and a a strict ideal. Then a is called

(1) a prime ideal if xy ∈ a implies that x ∈ a or y ∈ a, and
(2) a maximal ideal if a ⊆ b for some ideal b implies that b = a or b = A.

2.24. Lemma Let A be a commutative ring, I, J ⊆ A ideals and p ⊆ A a prime ideal. If
I · J ⊆ p then I ⊆ p or J ⊆ p.

Proof. Assume that I is not a subset of p. We need to show that J ⊆ p. Pick i ∈ p \ I and let
j ∈ J . Then ij ∈ I ·J ⊆ p. Since i /∈ p and p is prime, we have j ∈ p and therefore J ⊆ p. □
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2.25. Lemma Let A be a commutative ring and a an ideal. Then a is prime if and only if
A/a is a domain, and a is maximal if and only if A/a is a field. In particular, maximal ideals
are prime.

Proof. The case of prime ideals follows by definition and the fact that the kernel of A→ A/a
is equal to a. The case of maximal ideals follows from Corollary 2.15 and Lemma 2.19. The
“in particular” follows since fields are domains. □

2.26. Lemma Let f : A→ B be a morphism in CAlg and let a be an ideal of A and b be an
ideal of B.

(1) If b is prime, then so is f−1(b).
(2) If b is maximal, f−1(b) need not be maximal.
(3) If f is surjective and ker(f) ⊆ a, then a is prime (or maximal) if and only if f(a) is.

Proof. (1): Observe that the canonical map A/f−1(b)→ B/b is injective. Hence if B/b is a
domain, then so is A/f−1(b). (2): Consider the map Z→ Q and the maximal ideal {0} ⊆ Q.
Its preimage is again the zero ideal, which is prime but not maximal. (3): We claim that the
map A/a→ B/f(a) is an isomorphism, so one is a domain (or a field) if and only if the other
is. To see the claim, note that the assumption ker(f) ⊆ a implies that f−1(f(a)) = a, so by
the argument of (1), the map A/a→ B/f(a) is injective. But it is also surjective, since f is
surjective. □

2.27. Example Consider the inclusion Z → Z[i] of the integers into the Gaussian integers.
Let p be a prime number. Whether or not the ideal of Z[i] generated by p is a prime ideal
depends on p: In Z[i] we have 2 = (1 + i)(1− i), so the ideal generated by 2 is not prime. In
fact, since 1− i = −i(1 + i), we see that (2) = (1 + i)2 as ideals of Z[i]. It turns out that for
odd primes, there are two cases to consider:

(1) if p ≡ 1 mod 4. In this case (p) is the product of two prime ideals.
(2) if p ≡ 3 mod 4. In this case (p) is a prime ideal.

One way to prove this is to use that Z[i] is a euclidean domain, see Exercise 3 on the
Exercise Sheet 1.

2.28. Lemma Let A be a commutative ring and a a strict ideal of A. There exists a maximal
ideal m of A which contains a. In particular, every non-unit a ∈ A\A× lies in some maximal
ideal.

Proof. Consider the (partially ordered) set S of strict ideals b of A (that is b ̸= A) which
contain a. Given an increasing sequence b1 ⊆ b2 ⊆ . . . in S let us consider the union b of all
bi’s. Then b is a member of S: Obviously a ⊆ b. Furthermore, b ̸= A, for else 1 ∈ b which
implies that 1 ∈ bi for some i ≥ 1 which it is not. Consequently, by Zorn’s lemma, there
exists a maximal element m of S. To see that m is a maximal ideal, suppose given a further
ideal m′ containing m. Then m′ also contains a. Now either m′ = A or m′ ∈ S from which
it follows by maximality of m is S that m′ = m. To see the “in particular” simply consider
a = (a). □

2.29. Definition A domain A is called a principal ideal domain (PID) if every ideal a in A is
principal, that is, if a = (a) for some a ∈ A.
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2.30. Example Every field K is a PID. The rings Z and Z[i] are PIDs. For a field K, the
polynomial ring K[X] is a PID. In fact, all these examples are Euclidean domains, and any
Euclidean domain is a PID as we have shown last term.

2.31. Proposition Let A be a PID and a ̸= 0 an ideal. Then a is prime if and only if a is
maximal.

Proof. Maximal ideals are always prime by Lemma 2.25. So let us assume a is a prime ideal.
Pick an ideal m containing a. Let m = (m) and a = (a). Then there exists b ∈ A such that
a = mb. Since a is prime we must have m ∈ a or b ∈ a. In the former case we conclude that
a is maximal, so let us assume the latter. Since a = (a) there then exists x ∈ A such that
xa = b. Together we find a = mxa and hence a(1−mx) = 0. Since a ̸= 0 and A is a domain,
we find mx = 1 and hence that m is a unit and thus that m = A. Again, we conclude that a
is maximal. □

2.32. Proposition Let A be a commutative ring. Then A[X] is a PID if and only if A is a
field.

Proof. If A is a field, we have stated above that A[X] is a PID. Conversely, suppose that A[X]
is a PID and hence in particular a domain. Then also A is a domain. Consequently, the ideal
(X) is prime because A[X]/(X) ∼= A. By Proposition 2.31 we conclude that (X) is maximal
and hence that A[X]/(X) ∼= A is a field. □

2.33. Remark In particular, for a field K, the polynomial ring K[X1, . . . , Xn] in n variables is
not a PID for n ≥ 2. However, for an element (x1, . . . , xn) in Kn, the ideal (X1−x1, . . . , Xn−
xn) ⊆ K[X1, . . . , Xn] is clearly the kernel of the surjective map K[X1, . . . , Xn]→ K sending
Xi to xi. Consequently, this ideal is maximal. If K is algebraically closed, it turns out that
every maximal ideal is of this form, and one obtains a bijective correspondence between Kn

and the set of maximal ideals in K[X1, . . . , Xn] (this is an equivalent formulation of Hilbert’s
Nullstellensatz which we will prove later in this course).

For non-algebraically closed fields, this is not true: for instance, the ideal (X2+1) ⊆ R[X]
is maximal (it is irreducible and hence prime and hence maximal since R[X] is a PID), but
is not of the form (X − a) for some a ∈ R.

2.34. Definition A commutative ring is called local if it contains a unique maximal ideal.
For a local ring (A,m), we call κ = A/m its residue field. We say that a local ring is of equal
characteristic if it contains a field (and hence necessarily a prime field, i.e. Q or Fp for some
prime p). Otherwise we say that A is of mixed characteristic.

2.35. Remark As a generalization of local rings, we call a commutative ring A semi-local if
it contains only finitely many maximal ideals. We will not talk much about semi-local rings,
however.

Exercise. Let (A,m) be a local domain and F its field of fractions. Show that A is of
equal characteristic if and only if char(F ) = char(κ) and of mixed characteristic if and only
if char(F ) = 0 and char(κ) > 0.

2.36. Example We note that a local ring is non-zero: The zero ideal is maximal only in fields,
and the zero ring is not a field. Conversely, fields are local rings ({0} is indeed the unique
maximal ideal).
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2.37. Lemma Let A be a commutative ring. Then A is local if and only if the set A \ A×

forms an ideal. In this case, A \A× = m is the unique maximal ideal.

Proof. Suppose A is local with maximal ideal m. We show that m = A \A×. By Lemma 2.28
any element of A \ A× lies in some maximal ideal, and hence in m, so that A \ A× ⊆ m. On
the other hand, m ⊆ A \ A× as m cannot contain a unit (m ̸= A). Conversely, suppose that
the set A \A× forms an ideal m. Then this is maximal, for if m ⊆ m′ is a strict inclusion, m′

contains a unit and hence m′ = A. As any strict ideal is contained in A \ A×, we find that
any maximal ideal is contained in A \ A×, so we conclude that A \ A× is in fact the unique
maximal ideal. □

2.38. Example (1) Let p ∈ Z be a prime number an consider the ring Z/pkZ. This is a
local ring (of mixed characteristic), with maximal ideal generated by p and residue
field Fp.

(2) Let K be a field and consider the ring K[X]/(X)n. This is a local ring (of equal
characteristic) with maximal ideal generated by X and residue field K.

(3) Let K be a field and consider the ring KJXK = lim
n

K[X]/(X)n – here lim refers to

the (cofiltered) inverse limit of the sequence of ring homomorphisms

· · · → K[X]/(X)3 → K[X]/(X)2 → K[X]/(X) ∼= K.

This is the ring of power series in K, we may view elements as expressions
∑∞

n anX
n

with an ∈ K and usual multiplication of power series. This is a local ring (of equal
characteristic) with maximal ideal again generated by X and residue field K.

(4) Let Z(p) = {m/n ∈ Q | n /∈ (p)} where p is a prime. This is a local ring (of mixed
characteristic) with maximal ideal generated by p.

For (1), the surjection Z/pkZ→ Fp whose kernel is generated by p shows that (p) is indeed

maximal. Moreover, given any surjection to a field Z/pkZ→ K, we find that the image x of p
satisfies xk = 0 and hence x = 0. Therefore, (p) is contained in the kernel of Z/pk → K hence
since (p) is maximal it coincides with the kernel, showing that (p) is the unique maximal
ideal. To see (2) and (3), note that by Lemma 2.37 it suffices to show that the ideal spanned
by X consists precisely of the non-units (one can of course also prove (1) in this way). For
this use a geometric series argument to show that

∑∞
n anX

n is invertible if and only if a0 ̸= 0,
and the same in the rings K[X]/(X)n. (4) is a special case of a general result about certain
localizations of commutative rings: Given a commutative ring A and a prime ideal p, the
localisation A(p) of A at the subset A \ p is a local ring with maximal ideal given by the ideal
spanned by p in the localization A(p), as we will show later when discussing localizations of
rings more thoroughly.

2.39. Definition Let A be a commutative ring. The (Zariski) spectrum of A is the set of
prime ideals of A:

Spec(A) = {p ⊆ A | p prime ideal}.
For a subset T ⊆ A, we set

V (T ) = {p ∈ Spec(A) | T ⊆ p} ⊆ Spec(A).

2.40. Remark Let T ⊆ T ′ ⊆ A be subsets. Then V (T ′) ⊆ V (T ). Let I = (T ) be the
ideal generated by the set T , then T ⊆ I and consequently V (I) ⊆ V (T ). In fact, we have
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V (T ) = V (I). Indeed, T ⊆ p if and only if I ⊆ p since p is itself an ideal. Exercise:
V (0) = Spec(A) and V (T ) = ∅ if and only if the ideal generated by T is A.

2.41. Example (1) Let K be a field. Then Spec(K) = {0}.
(2) Let A be a PID. Then by Proposition 2.31, every non-zero prime ideal is maximal.

Therefore we have

Spec(A) = {0} ∪ {m ⊆ A | m maximal ideal}.

In particular for the integers Z and the polynomial ring K[X] over a field K, we have

Spec(Z) = {0} ∪ {(p) | p prime number} and Spec(K[X]) = {0} ∪ {(f) | f irreducible}

since in a PID, every prime ideal is generated by an irreducible (or equivalently prime)
element.

(3) Later, we will show the following: let A be a commutative ring with prime ideal p.
Then

Spec(A(p)) = {q ∈ Spec(A) | q ⊆ p} ⊆ Spec(A)

In particular, Spec(Z(p)) = {0} ∪ {(p)}.

2.42. Lemma Let A be a commutative ring.

(1) Let (ai)i∈I be a family of ideals of A. Then V (
⋃
i
ai) =

⋂
i
V (ai).

(2) Let a, a′ be ideals of A. Then V (a ∩ a′) = V (a · a′) = V (a) ∪ V (a′).

Proof. (1): By definition, p ∈ V (
⋃

i ai) if ∪iai ⊆ p. This is equivalent to the condition that
for all i ∈ I, ai ⊆ p which means that p ∈ ∩iV (ai). (2): We have p ∈ V (a) ∪ V (a′) if a ⊆ p
or a′ ⊆ p. This implies that a ∩ a′ ⊆ p and hence we find V (a) ∪ V (a′) ⊆ V (a ∩ a′). Since
a · a′ ⊆ a ∩ a′ we conclude from Remark 2.40 that

V (a) ∪ V (a′) ⊆ V (a ∩ a′) ⊆ V (a · a′).

Now, given p ∈ V (a · a′), we have a · a′ ⊆ p. Since p is prime, we deduce from Lemma 2.24
that a ⊆ p or a′ ⊆ p. This shows that V (a · a′) ⊆ V (a) ∪ V (a′). □

2.43. Corollary Let A be a commutative ring. The set of subsets {V (T ) | T ⊆ A} of Spec(A)
determine a topology on Spec(A), the Zariski topology.

Proof. Remark 2.40 and Lemma 2.42 say that the sets V (T ) are the closed sets of a topology
on Spec(A). □

In the following remark we briefly recall some notions from point-set topology.

2.44. Remark We recall that a topology on a set X is usually defined in the following way:
It consists of a collection U(X) ⊆ P(X) of subsets of X satsifying the following axioms:

(1) ∅, X ∈ U(X),
(2) given a family {Ui}i∈I with Ui ∈ U(X) for all i ∈ I, the union ∪iUi is an element of
U(X) as well.

(3) given U, V ∈ U(X), the intersection U ∩ V is an element of U(X) as well.

The elements of U are called the open sets of the topology.
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A subset C ⊆ X is called closed if X \ C is an element of U , that is, if X \ C is open1. A
topology is hence also determined by the collection of closed subsets C(X) which then satisfies
the axioms

(1) X, ∅ ∈ C(X),
(2) given a family {Ci}i∈I with Ci ∈ C(X) for all i ∈ I, the intersection ∩iCi is an element

of C(X) as well.
(3) given U, V ∈ C(X), the union U ∪ V is an element of C(X) as well.

Given a subset T of a topological space X, one defines its closure T as the intersection of
all closed sets C of X which contain T :

T ⊆ T =
⋂

C∈C(X)

C.

By definition, a subset is closed if and only if it agrees with its closure. Note that taking
closures only makes sense in a fixed ambient topological space (and very much depends on
that ambient space).

Let T ⊆ X be a subset of a topological space. The collection {T ∩ U | U ∈ U(X)} is a
topology on T , the subspace topology. Its closed sets are given by C ∩ T for C ∈ C. We will
always view subsets of topological spaces as topological spaces (equipped with the subspace
topology) and hence sometimes refer to them as subspaces rather than subsets.

For a family {Xi}i∈I of topological spaces indexed over a set I, the coproduct or disjoint
union is the topological space

∐
i∈I Xi whose underlying set is the disjoint union of the sets

Xi and where a subset of
∐

iXi is open if and only if its intersection with each Xi is open.
A topological space X is called reducible if there exist X1, X2 ∈ C(X) \ {∅, X} with X =

X1 ∪X2, and called irreducible otherwise.2

A map f : X → Y between topological spaces is called continuous if f−1(U(Y )) ⊆ U(X),
i.e. if preimages of open sets of Y are open sets in X. Equivalently, if preimages of closed sets
of Y are closed sets of X. We write Top for the category of topological spaces with continuous
maps as morphisms.

Exercise. If T ⊆ X is an irreducible subspace of a topological space X (that is, it is
irreducible in the subspace topology), the so is T .

2.45. Lemma Let A be a commutative ring and p ∈ Spec(A).

(1) {p} = V (p).
(2) {p} ⊆ Spec(A) is closed if and only if p is maximal.
(3) The association p 7→ V (p) is an order reversing bijection between the set of prime

ideasl of A and the set of irreducible closed subsets of Spec(A).

Proof. (1): By definition, we have

{p} =
⋂
T⊆p

V (T ) = V (p)

where the last equality holds true because the collection of subsets of p has p as maximal
element and the association T 7→ V (T ) is inclusion reversing. (2): Let m be a maximal ideal
containing p. Then m ∈ V (p). Hence, V (p) = {p} implies that p is maximal, and conversely,

1Keep in mind that sets are not doors: They are not either open or closed!
2The emtpy set not irreducible.



COMMUTATIVE ALGEBRA 13

if p is maximal, then V (p) = {p}. (3): By definition V (p) = V (p′) implies p = p′ for two
prime ideals: Since p ∈ V (p) = V (p′) we find that p ⊆ p′ and vice versa. The exercise in
Remark 2.44 together with (1) implies that for p a prime ideal, V (p) is irreducible (and closed
by definition of the topology). The map p 7→ V (p) is hence well-defined and injective. We
now show that it is also surjective, i.e. that every irreducible closed subset of Spec(A) is of
the form V (p) for a prime p. For this we need to make use of a Lemma which we will prove
later, Lemma 4.8.3 Using the language there, we first note that V (a) = V (

√
a) since a ⊆ p

if and only if
√
a ⊆ p for a prime p. Let us therefore assume that a is a radical ideal which

is not prime. We will show that V (a) is reducible. Indeed, let a, a′ ∈ A \ a with aa′ ∈ a.
Then a is strictly contained in both (a, a) and (a, a′), and (a, a) · (a, a′) is contained in a, in
particular (a, a) and (a, a′) are both strict ideals. Consequently, V (a) = V (a, a) ∪ V (a, a′)
and V (a, a) ̸= ∅ ≠ V (a, a′). It remains to show that V (a, a) ̸= V (a) ̸= V (a, a′). So assume
V (a, a) = V (a). This means that every prime p which contains a also contains a, from which it
follows that a ∈ ∩{p ∈ Spec(A) | a ⊆ p}. Since a is a radical ideal, it follows from Lemma 4.8
(3) that a ∈ a which is not the case. The argument for a′ is the same. □

2.46. Example Let A be a PID. By the above discussion, and the fact that non-zero prime
ideals are maximal, we find that Spec(A) consists of the closed points {p} where p is a non-

zero prime, and the point {0}. Moreover, {0} = V (0) = Spec(A), so that the one-element set
{0} ⊆ Spec(A) is dense. Moreover, for non-zero primes p, q we have q ∈ V (p) if and only if
q = p. Finally, let a be a strict ideal of A and we aim to describe V (a). Since A is a PID,
a = (a) for some element a which can be written as a product of primes p1 · · · pk (recall that
a ̸= A and hence a is a non-unit) and write pi = (pi) for the generated ideals. Then we get

V (a) = V (p1 · · · pk) =
k⋃

i=1

V (pi)

describing V (a) as a union of closed irreducible subspaces (which are in fact all singleton
spaces, since each pi is maximal).

2.47. Lemma Let f : A → B be a morphism in CAlg. Then the map f−1 : Spec(B) →
Spec(A), sending q to f−1(q) is a continuous map.

Proof. If q is a prime ideal, the so is f−1(q). In particular, the map is a well-defined map
of sets. To see that it is continuous, we need to show that f−1(V (T ))) is a closed subset of
Spec(B) is T ⊆ A is a subset (because the closed subsets of Spec(A) are of the form V (T )).
For this we calculate

f−1(V (T )) = {q ∈ Spec(B) | T ⊆ f−1(q)} = {q ∈ Spec(B) | f(T ) ⊆ q} = V (f(T )).

□

2.48. Corollary We have a functor Spec(−) : CAlgop → Top.

Proof. It remains to check that id−1 : Spec(A) → Spec(A) is in fact the identity (which is
clear) and that for two composable maps in CAlg, f : A→ B and g : B → C, we have that

f−1 ◦ g−1 = (gf)−1 : Spec(C)→ Spec(A)

which is again clear. □

3apologies for this! Note, however, that the proof of Lemma 4.8 is completely elementary and does not use
what we are trying to prove here. I will probably change the order in the script sometime in the future.
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2.49.Remark The above functor Spec(−) loses a lot of information about commutative rings:
Any two fields have Spec(−) simply the one-point space, and there are many commutative
rings whose spectrum is Sierpinski space (the space consisting of two points, one of which
is open) for instance any local PID which is not a field (these are equivalently the discrete
valuation rings – we will discuss them at the end of this term). Later, and in algebraic
geometry, we will equip the topological space Spec(A) with extra structure, and this extra
structure in fact encodes all of the information that A has.

3. Noetherian rings

3.1. Definition Let a be an ideal of a commutative ring A. We say that a is finitely generated
if there exist elements a1, . . . , an in A such that a = (a1, . . . , an).

Exercise. Let a be an ideal and consider the set S = {(T ) | T ⊆ a finite subset} of ideals
of A. Show that a is finitely generated if and only if S has a maximal element.

3.2. Proposition Let A be a commutative ring. TFAE:

(1) Every ideal of A is finitely generated.
(2) Every ascending sequence of ideals a1 ⊆ a2 ⊆ a3 ⊆ . . . stabilizes.
(3) Every non-empty collection S of ideals has a maximal element (under inclusion of

ideals).

Proof. (1) ⇒ (2): Let a = ∪iai. By (1), a is finitely generated, say by elements a1, . . . , ak.
Then there exists n ≥ 1 such that all ai lie in an. Consequently, we find an = an+1 = . . .
so that the sequence stabilizes. (2) ⇒ (3): This is a consequence of Zorn’s Lemma, since by
assumption (2), the union of an ascending sequence of elements in S is again an element of
S. (3)⇒ (1): Follows from the above exercise. □

3.3. Remark The implication (2)⇒ (3) can also be shown without using Zorn’s Lemma (and
hence the axiom of choice): Indeed, suppose that S is a non-empty collection of ideals which
does not have a maximal element. Pick a1 ∈ S and find a2 ∈ S containing a1. Inductively, we
find an ascending sequence of strict inclusions an ⊆ an+1 and hence a non-stabilizing sequence
of ideals.

3.4. Definition A commutative ring satisfying one of the equivalent conditions of Proposi-
tion 3.2 is called Noetherian.

3.5. Example Every PID is Noetherian since every ideal is even generated by a single element.

3.6. Definition An A-algbera B is called finitely generated if there exist n ≥ 0 and elements
b1, . . . , bn in B such that the unique map A[X1, . . . , Xn]→ B of A-algebras sending Xi to bi
is surjective.

3.7. Remark By Remark 2.13, a finitely generated A-algebra is isomorphic to an A-algebra
of the form A[X1, . . . , Xn]/a for some n ≥ 0 and ideal a ⊆ A[X1, . . . , Xn].

Exercise. Let B be a finitely generated A-algebra and C be a finitely generated B-algebra.
Show that C is a finitely generated A-algebra.
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The following theorem is called Hilbert’s Basissatz.

3.8. Theorem Let A be Noetherian and B be a finitely generated A-algebra. Then B is
Noetherian.

Proof. First, we observe that if the B-algebra structure map A → B is surjective, then
B is Noetherian: Indeed, let b be an ideal of B. Then b = f(f−1(b)) and f−1(b) is
finitely generated, say by elements a1, . . . , ak, since A is Noetherian. Then b is generated
by f(a1), . . . , f(ak). It therefore suffices to prove that A[X1, . . . , Xn] is Noetherian, and then
by induction that A[X] is Noetherian. We prove the contraposition and assume that A[X] is
not Noetherian. Choose an ideal a of A[X] which is not finitely generated. Choose f1 ∈ a of
minimal degree, and inductively, choose fn ∈ a \ (f1, . . . , fn−1) of minimal degree. This gives
a sequence of polynomials f1, f2, . . . with dn = deg(fn) ≥ deg(fn−1) = dn−1. Let ai be the
leading coefficient of fi. We then consider the following ascending chain of ideals in A:

(a1) ⊆ (a1, a2) ⊆ · · · ⊆ (a1, . . . , an) ⊆ . . .

If A is Noetherian, this sequence stabilizes, say from term n on, which implies that an+1 ∈
(a1, . . . , an) and hence an+1 =

∑n
i=1 biai for some bi in A. Consider the polynomial

g = fn+1 −
n∑

i=1

biX
dn+1−di · fi ∈ a.

By construction, we obtain deg(g) < dn+1 = deg(fn+1). Since fn+1 /∈ (f1, . . . , fn), also
g /∈ (f1, . . . , fn). But this contradicts the minimality of deg(fn+1) among elements of a \
(f1, . . . , fn). Therefore, the above sequence cannot stabilize, and A is not Noetherian. □

We now discuss a topological variant of the above ring theoretic definition motivated by
the observation that an ascending sequence of ideals in A gives rise to a descending sequence
of closed subsets of Spec(A).

3.9. Definition A topological space X is called Noetherian if every descending sequence of
closed subsets A0 ⊇ A1 ⊇ A2 ⊇ . . . stabilizes.

Exercise. Let X be a Noetherian topological space and Y ⊆ X a subset. Then Y , equipped
with the subspace topology, is also Noetherian.

3.10. Lemma Let X be a topological space. TFAE:

(1) X is Noetherian
(2) every non-empty collection of closed subsets has a minimal element
(3) every ascending chain of open subsets U0 ⊆ U1 ⊆ . . . stabilizes
(4) every non-empty collection of open subsets has a maximal element.

Proof. Since the operation sending a subset A ⊆ X to X \ A determines a order reversing
bijection between closed and open subsets, we find that (1)⇔ (3) and (2)⇔ (4). It therefore
suffices to show that (3) ⇔ (4). The implication (3) ⇒ (4) follows as in the proof of Propo-
sition 3.2 by Zorn’s lemma or as in Remark 3.3 and for the converse, note that an ascending
chain has a maximal element if and only if it stabilizes. □

3.11. Example (1) The metric (and hence topological spaces) R or Rn for general n ≥ 1
are not Noetherian: Consider for instance the collection of closed intervals [−1/n, 1/n]
with n ≥ 1.
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(2) IfA is a Noetherian ring, then Spec(A) is a Noetherian topological space: A descending
chain of closed subsets of Spec(A) is given by V (a1) ⊇ V (a2) ⊇ . . . (for ideals a1 ⊆
a2 ⊆ . . . ). Consequently, descending chains of closed subsets in Spec(A) give rise to
ascending chains of ideals in A. Hence, if A is Noetherian, Spec(A) is Noetherian as
well.

(3) There are non-Noetherian commutative rings where Spec(A) is Noetherian: Let K
be a field and consider A = K[X1, X2, . . . ]/(X

2
1 , X

2
2 , . . . ). Then (X1, X2, . . . ) is not

finitely generated, so A is not Noetherian. However, (X1, X2, . . . ) is the unique prime
ideal of A (Exercise), and hence Spec(A) = {∗} is trivially Noetherian.

3.12. Definition Let X be a topological space. A maximal irreducible subspace is called an
irreducible component of X.

3.13. Proposition Let X be a Noetherian topological space and Y ⊆ X a non-empty closed
subset. There exists n ≥ 1 and irreducible closed subsets Y1, . . . , Yn ⊆ X such that Y =
Y1 ∪ · · · ∪ Yn and Yi ⊈ Yj for i ̸= j. The decomposition Y = Y1 ∪ · · · ∪ Yn is unique up to
ordering and the Yi’s are the irreducible components of Y .

Proof. Existence: Let S be the subset of closed subsets of X which does not admit a decompo-
sition into closed irreducible subsets as in the statement of the proposition. If S is non-empty,
then it contains a minimal element since X is Noetherian. Then Y is not irreducible, so there
exists closed non-empty Y ′, Y ′′ ⊆ Y with Y = Y ∪ Y ′. By minimality of Y , both Y ′ and
Y ′′ can be written as finite unions of closed irreducible subspaces, and hence so can Y be,
contradicting that Y is an element of S. Therefore, S is empty.

Uniqueness: Let Y = Y1 ∪ · · · ∪ Yn = X1 ∪ . . . Xr be decomposition of Y into irreducible
closed subspaces Yi and Xk such that Yi ⊈ Yj for i ̸= j and Xk ⊈ Xl for k ̸= l. Then
X1 = ∪i(X1 ∩ Yi) so the irreducibility of X1 implies (after possibly renaming the Yi’s) that
X1 ⊆ Y1. Likewise Y1 ⊆ Xk for some k, so that k = 1 and X1 = Y1. Then consider the space
Y \ Y1 and iterate the argument.

Now let C be an irreducible component of Y = Y1 ∪ Yn with Yi as in the statement. Since
C is irreducible, it must be contained in one of the Yi’s and since it is maximal, it must equal
one of the Yi’s. Conversely, any Yi lies in an irreducible component, so the Yi’s are precisely
the irreducible components of Y . □

3.14. Corollary Let X be a Noetherian topological space. Then X has only finitely many
irreducible components.

3.15. Definition A prime ideal p ⊆ A is called minimal if for another prime ideal q ⊆ p it
follows that q = p.

3.16. Lemma Let p ⊆ A be a prime ideal. There exists a minimal prime ideal q ⊆ p.

Proof. We again appeal to Zorn’s lemma: Given a descending chain of prime ideals qi con-
tained in p, the intersection of all qi’s is again a prime ideal, and a minimal element for this
chain. Consequently, there exist a minimal prime ideal contained in p. □

3.17. Example If A is a domain then {0} is the unique minimal prime ideal.

3.18. Proposition Let A be a Noetherian commutative ring. Then A has only finitely many
minimal prime ideals.
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Proof. By Lemma 2.45 (3), the association a 7→ V (a) gives an order reversing bijection be-
tween prime ideals and irreducible closed subsets of Spec(A). Hence minimal primes are
bijective to irreducible components of Spec(A) of which there are only finitely many if A, and
hence Spec(A), is Noetherian. □

4. Radicals

We begin with the nilradical of a commutative ring.

4.1. Definition Let A be a commutative ring. An element x ∈ A is called nilpotent if xn = 0
for some n ≥ 1. The collection of all nilpotent elements is denoted by NA. The ring A is
called reduced if NA = {0}, i.e. 0 is the only nilpotent elements.

4.2. Remark Nilpotent elements x are zero-divisors, for if n is minimal such that xn = 0,
then x · xn−1 = 0. In particular, domains are reduced.

Exercise. Determine the nilpotent elements in the ring Z/nZ for n ≥ 2 a natural number.
Are the nilpotent elements the same as the zero-divisors? Give an explicit example of a
reduced ring which is not a domain.

4.3. Lemma The collection of nilpotent elements NA ⊆ A is an ideal, the nilradical of A.

Proof. Let a, b ∈ NA, and let n,m ≥ 1 such that an = 0 = bm. Then (a + b)m+n = 0
and (−a)n = 0. Therefore NA is a subgroup of A. Moreover, if x ∈ A is arbitrary, then
(ax)n = anxn = 0 so NA is indeed an ideal. □

4.4. Definition Let A be commutative ring. We denote by Ared the quotient ring A/NA of
A by its nilradical.

4.5. Proposition Let A be a commutative ring. Then

(1) Ared is reduced, and
(2) NA =

⋂
{p | p ⊆ A prime ideal }.

Proof. (1): Assume x ∈ Ared is nilpotent, say xn = 0 for n ≥ 1. Choose a ∈ A lifting x along
the projection map π : A → Ared. Then π(an) = xn = 0 and therefore an ∈ N . Pick m ≥ 1
such that 0 = (an)m = anm. This shows that a ∈ N and hence x = π(a) = 0.

(2): First, let x ∈ NA and p a prime ideal. Let n ≥ 1 such that xn = 0 ∈ p. Inductively, we
deduce that x ∈ p, which shows one inclusion. To see the converse inclusion, let x ∈ A \ NA.
We aim to show that there exists a prime p such that x /∈ p. Let S be the set of ideals a of
A such that no power xn of x lies in a:

S = {a | ∀n ≥ 1 : xn /∈ a}.

Then {0} ∈ S (since x is not nilpotent) and therefore S is non-empty. An application of
Zorn’s lemma shows that S contains a maximal element p (for an ascending chain of elements
in S, the union is again an element in S). By construction, x /∈ p, so it suffices to show that
p is prime. To do so, let a, a′ ∈ A \ p. We need to show that aa′ ∈ A \ p. Consider the
ideals (p, a) and (p, a′). Both contain p, so the maximality of p in S shows that (p, a) and

(p, a′) are not contained in S. Pick n, n′ ≥ 1 such that xn ∈ (p, a) and xn
′ ∈ (p, a′). Then

xn+n′ ∈ (p, aa′) so that (p, aa′) /∈ S, showing that aa′ /∈ p as needed. □
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4.6. Definition Let A be a commutative ring and a an ideal. The radical of a is the set
√
a = {x ∈ A | ∃n ≥ 1 such that xn ∈ a}.

This is again an ideal of A and contains a. We say that a is a radical ideal if a =
√
a.

4.7. Example Let A be a commutative ring. Then the nilradical NA is a radical ideal and
any prime ideal is a radical ideal.

4.8. Lemma Let A be a commutative ring, a an ideal and let π : A→ A/a be the projection.

(1)
√
0 = NA,

(2)
√
a = π−1(NA/a). In particular, a is a radical ideal if and only if A/a is reduced.

(3)
√
a = ∩{p ∈ Spec(A) | a ⊆ p}.

Proof. (1): This is the definition of NA. (2): Is again simply spelling out definitions. The
“in particular” follows since a = π−1(0) so a being radical indeed is equivalent to 0 = NA/a

which is the definition of A/a being reduced. (3): We have
√
a = π−1(

⋂
p∈Spec(A/a)

p) =
⋂

p∈Spec(A/a)

π−1(p) =
⋂

p∈Spec(A),a⊆p

p

where the first equality is (2) together with Proposition 4.5, and the last equality is Corol-
lary 2.15 combined with Lemma 2.26. □

4.9. Lemma Let f : A → B be a morphism in CAlg and let a, a′ be ideals of A and b be an
ideal of B. Then the following assertions hold true:

(1)
√
a is a radical ideal,

(2)
√
a · a′ =

√
a ∩ a′ =

√
a ∩
√
a′,

(3)
√
a+ a′ =

√√
a+
√
a′.

(4)
√
a = A if and only if a = A,

(5)
√
a and

√
a′ are coprime if and only if a and a′ are coprime,

(6) f−1(
√
b) =

√
f−1(b), and

(7) (f(
√
a)) ⊆

√
(f(a)).

Proof. (1): assume x ∈ A and n ≥ 1 such that xn ∈
√
a. Then there is m ≥ 1 such that

xnm ∈ a and hence x ∈
√
a. (2): The inclusion a ·a′ ⊆ a∩a′ induces an inclusion of associated

radicals. The other inclusion follows from the observation that (a∩a′)2 ⊆ a ·a′. For the latter
equality, the inclusion ⊆ holds by definition. For the inclusion ⊇ let x be such that there are n
and m such that xn ∈ a and xm ∈ a′. Then xmax{n,m} ∈ a∩a′ as needed. (3): The inclusion ⊆
follows again because taking radicals preserves inclusions of ideals. Conversely, we first note
that

√
a+
√
b ⊆
√
a+ b since

√
a+ b is an ideal which contains

√
a and

√
b. Applying radicals

on both sides gives the desired inclusion. (4): This follows from the observation that if xn = 1,

then x is a unit. (5): Follows by combining (3) and (4). (6): x ∈
√

f−1(b) means that there

is an n ≥ 1 such that xn ∈ f−1(b) which is equivalent to the condition that f(x) ∈
√
b as

needed (since f is a ring homomorphism). (7): Let x ∈
√
a. Then f(x)n ∈ f(a) ⊆ (f(a)) and

so f(x) ∈
√
(f(a)) as needed. □

4.10. Example (1) Consider the ring Z and a = (n). Let p1, . . . , pn be the distinct prime
divisors of n. Then

√
a = (p1 · · · pn) = ∩i(pi). In particular, (n) is a radical ideal if
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and only if every prime divisor of n divides n precisely once. For instance, we have√
(6) = (6) and

√
(18) = (6) and

√
(8) = (2).

(2) Let K be a field and T ⊆ Kn a subset. Then the vanishing ideal I(T ) = {f ∈
K[X1, . . . , Xn] | ∀x ∈ T : f(x) = 0} is a radical ideal. This is because the nilradical
of a field is the zero ideal.

4.11. Definition Let A be a commutative ring. We define its Jacobson radical JA to be

JA =
⋂
{m ⊆ A | m maximal ideal}.

4.12. Remark Since maximal ideals are prime, there is an inclusion NA ⊆ JA. Furthermore,
since every maximal ideal is a radical ideal, we find that JA is also a radical ideal.

4.13. Lemma Let A be a commutative ring. Then x ∈ JA if and only if for all y ∈ A, we
have 1− xy ∈ A×.

Proof. (⇒): If there is y ∈ A such that 1−xy ∈ A\A×, then there is a maximal ideal m such
that 1 − xy ∈ m and therefore such that xy /∈ m (since 1 /∈ m). Consequently, x /∈ m. (⇐):
Conversely, if there exists a maximal ideal with x /∈ m, then the image of x in the field A/m
is non-zero and hence invertible. Thus, there exists y ∈ A such that 1−xy ∈ m ⊆ A\A×. □

4.14. Example Consider the ring A[X] for a commutative ring A. For an element f =∑n
i=0 aiX

i, the following assertions hold true:

(1) f ∈ NA[X] if and only if for all i ≥ 0, ai ∈ NA.

(2) f ∈ A[X]× if and only if a0 ∈ A× and for i ≥ 1, ai ∈ NA.

If f ∈ JA[X], then Lemma 4.13 says that 1 − fX is a unit, and hence by (1) above all
coefficients of f are nilpotent. Thus by (2), we find NA[X] = JA[X]. If A is reduced, we
furthermore conclude from (2) that A[X] is also reduced, so that NA[X] = JA[X] = 0.

4.15. Example Let K be a field and let KJXK be the power series ring over K. This is a
domain (in particular reduced) so that NKJXK = 0. On the other hand, in Example 2.41 we
have observed that it is also a local ring with maximal ideal given by the ideal generated by
(X). Hence, JKJXK = (X).

4.16. Definition A commutative ring A is called a Jacobson ring if for all prime ideals p of
A, one has

p =
⋂
{m ⊆ A | m maximal with p ⊆ m}.

4.17. Example A field K is a Jacobson ring and Z is a Jacobson ring. A PID A is a Jacobson
ring if and only if JA = 0. Indeed, all non-zero primes are maximal, so the condition is
satisfied for non-zero primes. For the 0-ideal, the definition simply says 0 = JA.

4.18. Remark Let A be a Jacobson ring and a an ideal of A. Then NA = JA and A/a is
also a Jacobson ring. Indeed, first we note that the definition implies that JA ⊆ p for all
prime ideals p, so that JA ⊆ NA as well. The fact that A/a is a Jacobson ring follows from
Lemma 2.26 (3). In particular, one has NA/a = JA/a for all a ⊆ A. Taking preimages along



20 MARKUS LAND

the projection map π : A→ A/a, we get
√
a = π−1(NA/a) = π−1(JA/a) =

⋂
{m | m maximal with a ⊆ m}.

4.19. Corollary A commutative ring A is a Jacobson ring if and only if for any ideal a of A,
one has NA/a = JA/a.

Proof. The condition for each a is a valid in a Jacobson ring by Remark 4.18. Conversely,
if the condition holds for each a it also holds for prime ideals p and taking preimages as in
Remark 4.18 one gets that A is a Jacobson ring. □

4.20. Proposition Let A be a Noetherian domain in which every non-zero prime ideal is
maximal and which contains infinitely many maximal ideals. Then A is a Jacobson ring.

Proof. It suffices to prove that JA = 0, compare Example 4.17, since all non-zero primes are
maximal. To do so, let 0 ̸= x ∈ A\A×. We show that x only lies in finitely many prime ideals,
and in particular in only finitely many maximal ideals. Since A has infinitely many maximal
ideals, x is not contained in the Jacobson radical as needed. Consider the map A → A/(x).
Then the prime ideals which contain x are precisely the prime ideals of A/(x). Consider such
a prime ideal q ⊆ A/(x) and suppose q′ ⊆ q is a further prime ideal. Then both preimages
under A→ A/(x) are non-zero prime ideals, and hence must agree since the non-zero primes
in A are maximal. We deduce that all prime ideals of A/(x) are minimal. Since A/(x) is
Noetherian, there are only finitely many such minimal primes and the proposition follows. □

4.21. Example A PID is a Noetherian domain whose non-zero primes are maximal. Hence,
a PID with infinitely many maximal ideals is a Jacobson ring. Moreover, by definition, for
a local ring (A,m), we have JA = m ̸= 0, so a local PID is not a Jacobson ring (unless it
is a field). Local PIDs are also called discrete valuation rings, we will study them in more
detail at the end of the term. This shows that the condition in Proposition 4.20 that A has
infinitely many maximal ideals cannot be dropped in general.

4.22. Example Let A be a semi-local domain, with maximal ideals m1, . . . ,mn. Since any
two maximal ideals are coprime or equal, we deduce from the Chinese remainder theorem
that A/ ∩ mi

∼=
∏

iA/mi. If A is a Jacobson ring, then ∩mi = JA = NA, and the condition
that A is a domain implies that NA = 0. Consequently A ∼=

∏
A/mi, which in turn implies

n = 1 (again since A is a domain), i.e. that A is in fact local. But a local ring is Jacobson if
and only if it is a field. We deduce that a semi-local domain is Jacobson if and only if it is a
field.

We end this section with two further topological spaces associated to commutative rings.

4.23. Definition Let A be a commutative ring. We define the following subspaces of Spec(A):

(1) Specmax(A) = {m ∈ Spec(A) | m maximal}, the maximal spectrum and
(2) Specrab(A) = {m ∩A ∈ Spec(A) | m ⊆ A[X] maximal}, the Rabinowitsch spectrum

4.24. Remark For a commutative ring A, one has that Specmax(A) ⊆ Specrab(A), since for
all maximal ideals m of A, one has m = (m, X) ∩A and (m, X) is a maximal ideal of A[X].

4.25. Lemma Let A be a commutative ring and a a strict ideal of A. Then
√
a =

⋂
{p ∈ Specrab(A) | a ⊆ p}.
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5. Affine algebraic geometry

5.1. Definition Let A be a commutative ring and B an A-algebra. An A-subalgebra of B is a
subring B′ whose inclusion to B is a morphism of A-algebras. For T ⊆ B a subset, we denote
by A[T ] ⊆ B the image of the tautological A-algebra morphism A[Xt; t ∈ T ]→ B. The subset
T ⊆ B is called algebraically independent (over A) if the tautological map A[Xt; t ∈ T ]→ B,
whose image is B[T ], is injective. An element b of B such that {b} is algebraically independent
is called transcendental.

5.2. Remark The A-subalgebra A[T ] is the smallest A-subalgebra of B which contains the
set T . The notation is of course misleading, since A[T ] does not only depend on the set T ,
but also the inclusion of this set as a subset of B.

5.3. Example (1) Consider C as a Z-algebra and the set {i} ⊆ C. Then Z[{i}] = Z[i] is
the ring of Gaussian integers.

(2) Consider C as a Q-algebra and a ∈ C. If a is algebraic, let q be its minimal polynomial.
Then Q[{a}] = Q[X]/(q) and this is a finite field extension of Q. If a is not algebraic
(i.e. transcendental in the above sense), then the map Q[X] → C is injective, and
Q[{a}] ∼= Q[X].

(3) Let K be a field and consider the function field K(X) = Quot(K[X]) as a K-algebra.
Then K[{X}] = K[X].

Exercise. Let K be a field and n ≥ 1. Show that there are infinitely many irreducible
elements (even up to units) in K[X1, . . . , Xn].

5.4. Lemma Let K be a field and let n ≥ 1. Then the function field L = K(X1, . . . , Xn) =
Quot(K[X1, . . . , Xn]) is not finitely generated over K.

Proof. Pick an arbitrary finite subset {y1, . . . , ym} of L. We will show that the inclusion
K[y1, . . . , ym] ⊆ L is strict, so L is not finitely generated over K. To do so, for 1 ≤ i ≤ m,
we write yi = fi/gi for fi, gi ∈ K[X1, . . . , Xn]. Pick an irreducible element p ∈ K[X1, . . . , Xn]
coprime to g1 · · · gm. We claim that 1/p (which is an element of L) is not contained in
K[y1, . . . , ym]. Indeed, to the contrary, suppose it is. Then there is an equation

1/p =
∑

I=(i1,...,im)

αI(y1 · · · ym)I = f/g ∈ L = K(X1, . . . , Xn)

where (y1 · · · ym)I = yi11 · · · yimm and αI ∈ K and the irreducible factors of g are contained in
the set of irreducible factors of g1 · · · gm.. Multiplying by p and g we obtain

g = p · f ∈ K[X1, . . . , Xn]

showing that p divides g in K[X1, . . . , Xn]. However, by construction p and g are coprime,
so we arrive at a contradiction. □

The following is often referred to as Zariski’s main lemma:

5.5. Lemma Let L/K be a field extension such that L is finitely generated as K-algebra.
Then L/K is a finite field extension.

Proof. We can choose x1, . . . , xn in L such that L = K[x1, . . . , xn]. Let r be the largest
number such that r many of the xi’s are algebraically independent over K, by possibly
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reordering, we may assume that x1, . . . , xr are algebraically independent, in other words, so
that K[x1, . . . , xr] ⊆ L is isomorphic to a polynomial K-algebra on r variables. Since L is
a field, this inclusion factors through the function field E = K(x1, . . . , xr) and we obtain a
factorization of the field extension L/K as follows:

K −→ E −→ L.

By construction, L/E is finitely generated by the elements xr+1, . . . , xn and each of these
generators is algebraic over E. Consequently, L/E is finitely generated algebraic field exten-
sion and hence finite (see last terms notes). Choose a basis {y1, . . . , yd} of the E-vector space
L, without loss of generality we may assume that y1 = 1 the unit of E. Let us denote by
π : L→ E the E-linear map determined by sending y1 to 1, and for i ≥ 2, sending yi to zero.
Then π|E = idE by construction. For 1 ≤ i ≤ n, we can write

(1) xi =
d∑

j=1

αij · yj

with αij ∈ E. Likewise, for all 1 ≤ i, j ≤ d, we can write

(2) yi · yj =
d∑

k=1

βijk · yk

again with βijk ∈ E. Let R = K[αij , βijk] ⊆ E be the sub K-algebra of E generated by all
αij ’s and βijk’s. By construction, R is a finitely generated K-algebra. Now let e ∈ E be an
arbitrary element. Since E ⊆ L and L is finitely generated, we can write e as a polynomial
in the xi’s:

e =
∑
I

γI(x1 · · ·xn)I .

Now substitute (1) for each xi appearing above. Then, iteratively substituting (2), we find
that e can be expressed as a linear combination of the elements y1, . . . , yd with coefficients in
the ring R. Applying π to such a presentation and using that π is E-linear (in particular it
preserves multiplication by elements of R), we find that E is a finitely generated R-algebra.
Since R is a finitely generated K-algebra, we deduce that E is a finitely generated K-algebra.
Recalling that E = K(x1, . . . , xr) is a function field, we deduce from Lemma 5.4 that r = 0,
or in other words that K = E, so that L is indeed finite over K. □

5.6. Proposition Let K be a field, let f : A → B be a map of K-algebras and m ⊆ B a
maximal ideal. If B is a finitely generated K-algebra, then f−1(m) is maximal.

Proof. We observe that the canonical map of K-algebras A/f−1(m) → B/m is injective
and that B/m is a field and finitely generated over K since B is finitely generated over
K. By Zariski’s main lemma, we deduce that B/m is a finite dimensional K-vector space.
Consequently, A/f−1(m) is also a finite dimensional K-vector space. Since it is domain (it is
a subring of a field), it is a field: multiplication by any non-zero element of A/f−1(m) is a
K-linear map which is injective, and hence, by the fact that A/f−1(m) is a finite dimensional
K-vector space, also surjective. □

5.7. Remark For the above proposition all assumptions are necessary: If one drops the
assumption that K is a field, consider the ring map Z(p) → Q. It makes Q a finitely generated
Z(p)-algebra (exercise). Then consider {0} ⊆ Q the unique maximal ideal. Its preimage is
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again {0} which is not maximal in Z(p). If one drops the assumption that B is finitely
generated as K-algebra, consider K[X]→ K(X) and again the ideal {0} ⊆ K(X).

5.8. Definition Let K be a field and n ≥ 1. We write An
K = Kn for the set of n-tuples of

elements of K and call An
K the n-dimensional affine space over K.

The following is often referred to as the weak Nullstellensatz.

5.9. Proposition Let K be an algebraically closed field and m ⊆ K[X1, . . . , Xn] a maximal
ideal. Then there exists a = (a1, . . . , an) ∈ An

K such that m = (X1 − a1, . . . , Xn − an).

Proof. First, we note that the result is true for n = 1: Indeed, maximal ideals of K[X1] are
generated by a single monic and irreducible polynomial. Since K is algebraically closed, an
irreducible polynomial has degree one, hence is of the form X−a if monic. Now in general, for
i ∈ {1, . . . , n}, let ji : K[Xi] → K[X1, . . . , Xn] be the inclusion. By Proposition 5.6, j−1

i (m)
is a maximal ideal of K[Xi] and hence of the form (Xi − ai). It follows that the elements
Xi − ai of K[X1, . . . , Xn] are contained in m. We deduce that (X1 − a1, . . . , Xn − an) ⊆ m.
Since the former is already a maximal ideal, this inclusion is an equality. □

5.10. Definition Let K be a field and S ⊆ K[X1, . . . , Xn] be a subset. We set

V (S) = {(a1, . . . , an) ∈ An
K | f(a1, . . . , an) = 0 for all f ∈ S} ⊆ An

K .

A subset V ⊆ An
K of affine n-space is called an affine subvariety of An

K if there is a subset
S ⊆ K[X1, . . . , Xn] such that V = V (S).

5.11. Remark Let S ⊆ K[X1, . . . , Xn] be a subset.

(1) Let aS be the ideal generated by S. Then V (S) = V (aS).
(2) By Hilbert’s Basissatz, K[X1, . . . , Xn] is Noetherian, so any ideal a is finitely gener-

ated. Consequently, V (S) = V (f1, . . . , fn) for appropriate polynomials f1, . . . , fn.
(3) Finally, we have V (f1, . . . , fn) = V (f1) ∩ · · · ∩ V (fn).

5.12. Example (1) An
k and ∅ are affine subvarieties.

(2) Let S = {f1, . . . , fm} and all fi are linear polynomials in K[X1, . . . , Xn], i.e. fi =∑
j aijXj . Then V (S) is an affine subspace of An

K : It is the set of solutions of the
linear equations given by the fi as we study them in linear algebra. One collects the
coefficients {aij} into a matrix (of size m × n). let r be its rank. Then the affine
subspace V (S) has dimension n− r and is given by the translate by a special solution
of the equation system of the kernel of the homomorphism Kn → Km represented by
the matrix (aij).

(3) A subvariety of An
K of the form V (f) for a single element f ∈ K[X1, . . . , Xn] is called a

hypersurface. By Remark 5.11 (3), any subvariety is an intersection of hypersurfaces.
A hypersurface in A2

K is often called a curve, and a hypersurface in A3
K a surface.

Interesting examples are given by f = Y 2−X3−aX−b ∈ K[X,Y ], in which case V (f)
is an affine elliptic curve. Elliptic curves are very beautiful and quite well understood
objects of algebraic and arithmetic geometry and have played a prominent role in the
solution of Fermat’s last theorem.

(4) Let V be a subvariety of An
K and W a subvariety of Am

K . Then the cartesian product
V ×W is naturally a subvariety of An+m

K . Indeed, if V = V (a) and W = V (b), then
V ×W = V (a, b).
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5.13. Lemma Let K be a field and S ⊆ K[X1, . . . , Xn]. Let MS denote the set of maximal
ideals of K[X1, . . . , Xn] containing S. Then the association

V (S) −→MS , a = (a1, . . . , an) 7→ (X1 − a1, . . . , Xn − an) = ma

is well-defined and injective. If K is algebraically closed, it is bijective.

Proof. Consider a = (a1, . . . , an) and b = (b1, . . . , bn) with a, b ∈ V (S). We need to show that
ma ∈MS , that is, that S ⊆ ma. This is the case if for all f ∈ S, we have that f(a1, . . . , an) = 0
since ma is the kernel of the evaluation at a homomorphism K[X1, . . . , Xn] → K. This is
true since a ∈ V (S). The map under consideration is therefore well-defined. To see that it
is injective, assume that ma = mb. Since Xi − ai ∈ ma and Xi − bi ∈ mb, we deduce that
ai− bi ∈ ma ∩K = {0} for all 1 ≤ i ≤ n. This shows that a = b, so the map is injective. Now
assume that K is algebraically closed and let m ∈ MS (i.e. m is maximal and S ⊆ m). By
Proposition 5.9 m = ma for some a ∈ An

K . It then remains to show that a ∈ V (S). For this,
we need to see that for all f ∈ S, we have f(a) = 0 which follows from the assumption that
S ⊆ ma. □

5.14. Remark By definition,MS is a subset of Spec(K[X1, . . . , Xn]). Consequently, for any
S ⊆ K[X1, . . . , Xn], V (S) is also a subset of Spec(K[X1, . . . , Xn]). In particular, any affine
variety over K is a topological space (with the subspace topology of Spec(K[X1, . . . , Xn]).
We refer to this topology on an affine variety as the Zariski topology. By construction, an
affine variety V is a subspace of affine space An

K , and the affine varieties are precisely the
closed subspaces of An

K . In fact, since K[X1, . . . , Xn] is Noetherian, we have seen that An
K

is Noetherian and any affine variety is also Noetherian. Sometimes, people define an affine
variety to be irreducible, but we shall not do so.

The following theorem is a frequently stated version of Hilbert’s Nullstellensatz.

5.15. Theorem Let K be an algebraically closed field and a ⊆ K[X1, . . . , Xn] a strict ideal.
Then V (a) is not empty.

Proof. By Lemma 5.13, V (a) is bijective toMa, the set of maximal ideals containing a. Since
a is strict, the setMa is not empty, see Lemma 2.28. □

We recall the following definition.

5.16. Definition Let K be a field, n ≥ 1 and T ⊆ An
K a subset. The vanishing ideal of T is

the ideal
I(T ) = {f ∈ K[X1, . . . , Xn] | f(x) = 0 for all x ∈ T}.

Note that I(T ) is a radical ideal of K[X1, . . . , Xn].

Given an ideal a ⊆ K[X1, . . . , Xn], there are two radical ideals we can associate to a: Its
radical

√
a on the one hand, and the vanishing ideal I(V (a)) of the affine variety associated to

a. By construction a ⊆ I(V (a)), and since the latter is a radical ideal, one obtains an inclusion√
a ⊆ I(V (a)). The following is again a frequently stated version of Hilbert’s Nullstellensatz.

5.17. Theorem Let K be an algebraically closed field and a ⊆ K[X1, . . . , Xn] be an ideal.
Then there is an equality

I(V (a)) =
√
a.

We will use the following lemma for the proof of this version of Hilbert’s Nullstellensatz.
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5.18. Lemma Let K be a field and A a finitely generated K-algebra. Then A is a Jacobson
ring.

Proof. We consider the following claims:

p ⊆
⋂
{m ∈ Specmax(A) | p ⊆ m}

⊆
⋂
{m′ ∩A | p ⊆ m′ ∩A,m′ ∈ Specmax(A[X])}

= p

The first is obvious, the second follows from Proposition 5.6 (applied to the map A→ A[X]),
and the final claim is Lemma 4.25. Hence all inclusions are in fact equalities, which shows
the lemma. □

Proof of Theorem 5.17. First assume that a = A. Since V (A) = ∅, we find I(V (A)) = A.
We may now restrict our attention to strict ideals a ⊆ K[X1, . . . , Xn]. By Lemma 5.18,
K[X1, . . . , Xn] is a Jacobson ring, so that

√
a =

⋂
{m ∈ Specmax(A) | a ⊆ m}, see Re-

mark 4.18. It therefore suffices to show that if f ∈ I(V (a)) and m ∈ Specmax(A) with a ⊆ m,
then f ∈ m. Since K is algebraically closed, Lemma 5.13 says that there is a ∈ V (a) such
that m = ma. Moreover, f ∈ ma if and only if f(a) = 0. But this is true since f(x) = 0 for
all x ∈ V (a) by definition of I(V (a)). □

5.19. Corollary Let K be an algebraically closed field. Then the maps

{a ⊆ K[X1 . . . , Xn] | a radical ideal } {V ⊆ An
K | V affine subvariety of An

K}
V

I

are order reversing inverse bijections.

Proof. Both sets are ordered by inclusion. The maps V and I are order reversing by con-
struction. Now, for a radical ideal a, Theorem 5.17 says that I(V (a)) = a. Conversely, let
V = V (a) ⊆ An

K be an affine variety. By construction, V (a) ⊆ V (I(V (a))) = V (
√
a) ⊆ V (a),

the middle equality again being Hilbert’s Nullstellensatz. Therefore, all inclusions are equal-
ities, showing the corollary. □

5.20. Definition Let K be a field and V ⊆ An
K an affine variety. The coordinate ring of V is

the K-algebra
O(V ) = K[X1, . . . , Xn]/I(V ).

Note that O(V ) is a finitely generated and reduced K-algebra.

5.21. Remark (1) We may think of O(V ) as the ring of K-valued algebraic functions
on V : First, note that O(An

K) = K[X1, . . . , Xn]. Any polynomial K[X1, . . . , Xn]
determines a function on An

K which can be restricted to V . Now, the ideal I(V )
consists precisely of those functions on An

K which vanish on V , so an element of O(V )
determines a well-defined function on V . The ring O(V ) is sometimes also called the
ring of regular functions.

(2) Let V = V (a) for some radical ideal a ⊆ K[X1, . . . , Xn]. Then a ⊆ I(V (a)) so
that O(V (a)) is a quotient of K[X1, . . . , Xn]/a. If K is algebraically closed, then
I(V (a)) = a, so O(V (a)) = K[X1, . . . , Xn]/a.

5.22. Corollary Let K be an algebraically closed field and A a finitely generated reduced
K-algebra. Then A ∼= O(V ) for some affine subvariety V ⊆ An

K for some n ≥ 1.
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Proof. Choosing a presentation, we find A ∼= K[X1, . . . , Xn]/a. Since A is reduced a is a
radical ideal. Then consider V (a) ⊆ An

K so that O(V (a)) = K[X1, . . . , Xn]/a ∼= A by (2) of
the above remark. □

5.23. Remark Let K be an algebraically closed field. We have now defined and studied (to
some extend) the notion of affine subvarieties of An

K . Given one such, say V ⊆ An
K , we

consider affine subvarieties of V = V (a), that is subsets W ⊆ V which are again of the form
V (b) for some radical ideal b. Since V reverses inclusions, we find that V (b) ⊆ V (a) implies
that a ⊆ b. In particular, affine subvarieties of V (a) are determined by radical ideals b which
contain a, or equivalently, determined by radical ideals of K[X1, . . . , Xn]/a (by considering
preimages). One obtains that the maps

{b ⊆ K[X1 . . . , Xn]/a | b radical ideal } {W ⊆ V (a) |W affine subvariety of V (a)}
V

I

are order reversing inverse bijections. Note that a subvariety V ⊆ An
K ⊆ Spec(A) is a

topological space and that subvarieties of V are precisely the closed subsets of V in this
topology, see Remark 5.14.

5.24. Lemma Let K be an algebraically closed field and V ⊆ An
K an affine subvariety of An

K .
Then one has bijections

(1) {closed subspaces of V } ∼= {radical ideals in O(V )},
(2) {closed irreducible subspaces of V } ∼= {prime ideals in O(V )},
(3) {irreducible components of V } ∼= {minimal prime ideals in O(V )}, and
(4) {points of V } ∼= {maximal ideals in O(V )}.

Proof. We have argued (1) in the above remark and (4) is a consequence of Hilbert’s Null-
stellensatz. (3) is implied by (2), so it suffices to show that V (a) is irreducible if and only
if
√
a is prime. This is the same argument as in Lemma 2.45 and in fact holds for arbitrary

fields K (not necessarily algebraically closed). □

5.25. Example (1) Let K be a field. Then An
K is an irreducible topological space.

(2) Let f ∈ K[X1, . . . , Xn] be an irreducible polynomial and V = V (f) the associated
subvariety of An

K . Then V is irreducible. For a general polynomial f of positive
degree, it can be written as a product of irreducible polynomials p1 · · · pn. Then
V (f) = V (p1)∪· · ·∪V (pn) is the decomposition of V (f) into irreducible components.
For instance, consider f = XY ∈ K[X,Y ]. Then V (XY ) = V (X)∪V (Y ) is the union
of the coordinate axes in the plane.

(3) Let V ⊆ An
K be an affine subvariety of An

K and let Wi = V (ai) be affine subvarieties
of V , for 1 ≤ i ≤ r, without loss of generality assume ai are radical ideals. Then
O(Wi) = O(V )/ai and there is a canonical map

O(V ) −→
r∏

i=1

O(Wi)

given by the family of projections. The chinese remainder theorem says that this
map is surjective if and only if the ideals ai are pairwise coprime, and is injective if
∩iai = 0. Geometrically, this is interpreted as follows: The ai are pairwise coprime if
and only if the Wi’s are pariwise disjoint, and one has ∩iai if the union of the Wi’s
is all of V . In other words, we find that O(V ) is isomorphic to the product over the
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O(Wi)’s exactly if V is the disjoint union of the Wi’s, as one expect from a ring of
functions on a geometric object.

(4) Consider a = (Y 2 −X3) ⊆ C[X,Y ]. Then V (a) = {(a3, a2) ⊆ C2 | a ∈ C} is a cusp.
Consider the map C[X,Y ] → C[T ] with X 7→ T 2 and Y 7→ T 3. The kernel of this
map is the ideal (Y 2 −X3) (exercise), and let us denote the image by C ⊆ C[T ]. In
an exercise. we will show that the cusp V (a) is, as a variety, not isomorphic to affine
space A1

C. We will do so by distinguishing their ring of functions: O(A1
C)
∼= C[T ] and

by construction, O(V (a)) ∼= C. In other words, we will show that C is not isomorphic
to a polynomial ring in a single variable C[X].

Exercise. Show that C is not isomorphic to C[X]. Hint: Show that C is not a PID by
considering the ideal (T 2, T 3) ⊆ C.

6. Modules

6.1. Definition Let R be a commutative ring. An R-module consists of an abelian group
M together with a ring map R → EndZ(M) written r 7→ (m 7→ rm), and called the scalar
multiplication. Equivalently, the scalar multiplication is determined by a map R ×M →M ,
(r,m) 7→ rm satisfying the following axioms:

(1) r(m+m′) = rm+ rm′,
(2) (r + r′)m = rm+ r′m,
(3) (rs)m = r(sm), and
(4) 1m = m.

An R-submodule N of an R-module M is a subgroup N ⊆ M closed under the scalar mul-
tiplication, that is: for r ∈ R and n ∈ N , one has rn ∈ N . An R-module homomorphism
f : M → M ′ between R-modules is a map of abelian groups, such that for all r ∈ R and
m ∈M , one has f(rm) = rf(m), i.e. that f is R-linear. We write HomR(M,N) for the set of
R-linear maps from M to N and Mod(R) for the category of R-modules. Forgetting the scalar
multiplication and the abelian group structure gives forgetful functors Mod(R)→ Ab→ Set.

6.2. Example (1) Let K be a field. Then a K-module is precisely a K-vector space.
(2) Let R be a ring. Then R is an R-module via the multiplication map of R. An

R-submodule of R is precisely an ideal of R.
(3) Let f : S → R be a map in CAlg. Then there is a canonical restriction of scalars

functor Mod(R) → Mod(S), sending an R module (M,R → EndZ(M)) to the S-
module (M,S → R → EndZ(M)). In particular, R is canonically an S-module with
module multiplication given by s · r = f(s)r.

(4) The forgetful functor Mod(R)→ Ab is conservative (that is, it detects isomorphisms).
Indeed, if f : M → N is R-linear and bijective, then its inverse f−1 satisfies

f(f−1(rn)) = rn = r(ff−1(n)) = f(rf−1(n))

so that the bijectivity of f implies that f−1(rn) = rf−1(n).
(5) The forgetful functor Mod(Z)→ Ab is an isomorphism of categories (Exercise). Under

this isomorphism, the forgetful functor Mod(R) → Ab corresponds to the restriction
of scalars functor Mod(R)→ Mod(Z) along the unique map of rings Z→ R.
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(6) Given an R-linear map f : M → N , the kernel of f , ker(f) = {m ∈ M | f(m) = 0}
is an R-submodule of M and the Image Im(f) = f(M) ⊆ N is canonically an R-
submodule of N .

(7) Given an R-module M and an R-submodule N ⊆ M , the quotient of abelian groups
M/N is canonically an R-module vie r[m] = [rm]. It satisfies the expected universal
property: For any other R-module L, the quotient map induces an injection

HomR(M/N,L) −→ HomR(M,N)

whose image consists precisely of those R-linear maps f : M → N whose kernel is
contained in N .

(8) Given an R-linear map f : M → N , we define its cokernel coker(f) to be the quotient
R-module N/Im(f). Kernel and cokernel then have the expected universal properties:
the maps

HomR(L, ker(f))→ HomR(L,M) and HomR(coker(f), L)→ HomR(N,L)

are injective with image given by those maps L → M or N → L respectively, whose
composite with f is the zero map.

(9) Given an R-module M and an ideal a ⊆ R, we let aM = {
∑

i aimi | ai ∈ a and mi ∈
M}. This is an R-submodule of M . Then quotient R-module M/aM is in the im-
age of the restriction of scalars functor Mod(R/a) → Mod(R), that is, the scalar
multiplication map R→ EndZ(M/aM) factors through the projection R→ R/a.

(10) Given a family of R-modules {Mi}i∈I indexed over a set I, then the abelian groups⊕
iMi and

∏
iMi canonically admit the structure of R-modules via componentwise

scalar multiplication. We have that
⊕

iMi ⊆
∏

iMi is an R-submodule. These
constructions are coproducts and products in the categorical sense, that is, they satisfy
the following universal properties: For each j ∈ I, the canonical maps Mj →

⊕
iMi

and
∏

iMi →Mj are R-linear and or another R-module N , one has that the canonical
maps

HomR(
⊕
i

Mi, N)→
∏
i

HomR(Mi, N) and HomR(N,
∏
i

Mi)→
∏
i

HomR(N,Mi)

are bijections. We write R(I) for
⊕

I R and RI for
∏

I R. Modules isomorphic to R(I)

are called free (on the set I), and finitely generated free if I is finite (in which case

R(I) ∼= RI).
(11) Given R-modules M and N , the set of R-linear maps HomR(M,N) is naturally an R-

module. Indeed, first we note that it is an abelian group with monoid structure given
as follows. For f, g ∈ HomR(M,N), define the map f+g via (f+g)(m) = f(m)+g(m).
Immediately from the definitions, we find that f + g ∈ HomR(M,N). The neutral
element is the zero map 0 sending all elements of M to 0. The inverse of a map f is
then given by −f , defined via (−f)(m) = −f(m). This shows that HomR(M,N) is
indeed an abelian group. We define a scalar multiplication as follows: For r ∈ R and
f ∈ HomR(M,N) we set (rf)(m) = rf(m). Since R is commutative, one checks that
rf is again R-linear and that this defines an R-module structure on HomR(M,N).

(12) Given an R-linear map f : M →M ′ and another R-module N , the canonical maps

HomR(N,M)
f∗→ HomR(N,M ′) and HomR(M

′, N)
f∗
→ HomR(M,N)
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given by postcomposition and precomposition with f respectively, are R-linear. In
particular, the bijections appearing in the display in (10) are isomorphisms of R-
modules. These maps induce functors
(a) HomR(M,−) : Mod(R)→ Mod(R), and
(b) HomR(−,M) : Mod(R)op → Mod(R),
which can in fact be combined to a single functor HomR(−,−) : Mod(R)op×Mod(R)→
Mod(R). Composing this functor with the forgetful functor Mod(R)→ Set gives the
usual Hom functor of the category Mod(R).

Exercise. The category Mod(R) admits all small limits and colimits and the restriction of
scalar functors Mod(R)→ Mod(S), for ring maps S → R, commute with all small limits and
colimits. Hint: It suffices to consider equalizers and coequalizers.

Exercise. Let M be an R-module. Then the scalar multiplication map R → EndZ(M)
factors through the forgetful map EndR(M) → EndZ(M), that is, scalar multiplication by a
fixed element of R on M is an R-linear map.

6.3. Definition An R-module M is called

(1) finitely generated, if there exists a finite set I and a surjection RI → M . In other
words, if M is a quotient of a finitely generated free R-module,

(2) finitely presented, if there exists a finite set I and a surjection RI →M whose kernel
is again a finitely generated R-module.

(3) Noetherian, if any of the following equivalent conditions are satisfied (the proof that
these conditions are equivalent carries over verbatim from the case of Noetherian rings,
Proposition 3.2).
(a) all submodules of M are finitely generated,
(b) every ascending chain of submodules of M stabilizes,
(c) every non-empty collection of submodules of M has a maximum.

Exercise. Let M and N be Noetherian R-modules. Show that M ⊕N is also Noetherian.

6.4. Lemma Let R be a Noetherian ring and M an R-module. Then M is Noetherian if
and only if M is finitely generated. In particular, finitely generated R-modules are finitely
presented.

Proof. Clearly M being Noetherian implies that M is finitely generated. To see the converse,
we first note that R, viewed as an R-module is Noetherian, since R-submodules of R are
precisely ideals of R. The above exercise shows that Rn is Noetherian for all n ≥ 1. Since M
is finitely generated, there is a surjection Rn →M . For any ascending chain of R-submodules
of M , the preimages along the map Rn →M now form an ascending chain of R-submodules
of Rn which stabilizes since Rn is Noetherian. Consequently, the chain of submodules of M
also stabilizes, so M is Noetherian. □

6.5. Definition Let M,N and L be R-modules. A map f : M ×N → L is called R-bilinear
if for all m,n′ ∈M , n, n′ ∈ N and r ∈ R, one has:

(1) f(m+m′, n) = f(m,n) + f(m′, n),
(2) f(m,n+ n′) = f(m,n) + f(m,n′), and
(3) f(rm, n) = rf(m,n) = f(m, rn).
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We denote by HomR,R(M×N,L) the set of R-bilinear maps. Note again, that it is canonically
an R-module via (rf)(m,n) = r · f(m,n).

6.6. Remark For R-modules M,N and L, the map

HomR,R(M ×N,L)→ HomR(N,HomR(M,L))

sending f to the map n 7→ f(−, n) is R-linear and a bijection, hence an isomorphism of
R-modules.

6.7. Definition Let M and N be R-modules. A tensor product of M and N consists of
an R-module M ⊗R N equipped with a R-bilinear map M × N → M ⊗R N satisfying the
following universal property: For every R-bilinear map φ : M ×N → L, there exists a unique
R-linear map φ̄ : M ⊗R N → L making the diagram

M ×N L

M ⊗R N

φ

φ̄

commute. In other words, the universal property says that the canonical map

HomR(M ⊗R N,L) −→ HomR,R(M ×N,L)

is a bijection.

6.8. Remark If a tensor product exists, it is specified up to unique isomorphism by its
universal property. The question thus really is, do tensor products exist. The answer is yes:

6.9. Lemma Let M and N be R-modules. Then a tensor product (M⊗RN,M×N →M⊗RN)
exists.

Proof. We define M ⊗R N by brut-force: First we consider F (M,N) = R(M×N), the free R-
module on the setM×N . This comes with a map of sets ι : M×N → F (M,N). The universal
property says that the map φ : M × N → L extends uniquely to a map φ̃ : F (M,N) → L
of R-modules. The map ι is not R-bilinear: For instance, ι(rm, n) ̸= rι(m,n), and likewise
ι(m,n+ n′) ̸= ι(m,n) + ι(m,n′). So consider the sub R-module V of F (M,N) generated by
the set{
ι(m+m′, n)−ι(m,n)−ι(m′, n), ι(m,n+n′)−ι(m,n)−ι(m,n′), ι(rm, n)−rι(m,n), ι(m, rn)−rι(m,n)

}
where m,m′ ∈ M,n, n′ ∈ N, r ∈ R are arbitrary elements. Then define M ⊗R N as the
quotient R-module F (M,N)/V . By construction, the composite

M ×N
ι−→ F (M,N) −→ F (M,N)/V = M ⊗R N

is R-bilinear. Moreover, since φ is R-bilinear, the map φ̃ extends uniquely to the quotient
M ⊗R N , showing that this object satisfies the required universal property. □

6.10. Remark The image under the map M × N → M ⊗R N of an element (m,n) is often
written m⊗ n and called an elementary tensor. It is important to keep in mind that not all
elements of M ⊗RN are of this form (but they form a generating set, that is, every element is
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of a sum of elementary tensors). For instance, m⊗n+m′⊗n′ is in general not an elementary
tensor. But the tensor product is bilinear, so that

m⊗ n+m⊗ n′ = m⊗ (n+ n′) and m⊗ n+m′ ⊗ n = (m+m′)⊗ n.

The R-module structure is then given by r · (m ⊗ n) = rm ⊗ n = m ⊗ rn, that is, we are
allowed to move scalars from R through the tensor sign.

6.11. Example Let p and q be different prime numbers. Then Z/pZ⊗ Z/qZ = 0. Indeed, it
suffices to show that any biadditive map f : Z/pZ×Z/qZ→M , for an arbitrary abelian group
M , is the zero map. Since f(m,n) = mn · f(1, 1), this map is determined by x = f(1, 1).
Moreover, this element satisfies px = qx = 0 since pf(1, 1) = f(p, 1) = f(0, 1) = 0 and
likewise qf(1, 1) = f(1, q) = f(1, 0) = 0. But since p and q are coprime, there exists n,m
such that np+mq = 1, and consequently that

x = (np+mq)x = npx+mqx = 0.

6.12. Example Let p be a prime number. Then Z/pZ ⊗Z Q = 0. Indeed, by the same
argument as above, any biadditive map f : Z/pZ × Q → M is determined by m = f(1, 1).
Then we have

m = pf(1, 1/p) = f(p, 1/p) = f(0, 1/p) = 0.

6.13. Lemma There are canonical isomorphisms αM,N,L : (M ⊗RN)⊗RL ∼= M ⊗R (N ⊗RL)
and canonical isomorphisms τM,N : M ⊗R N → N ⊗R M . Furthermore, there are canonical
isomorphisms R⊗R M ∼= M ∼= M ⊗R R. These isomorphisms make (Mod(R),⊗R, R) into a
symmetric monoidal category, that is, they satisfy various coherence axioms.

Proof. The isomorphisms α and τ are inherited from the corresponding isomorphisms for
the cartesian product. Finally, the scalar multiplication map R × M → M is R-bilinear
and satisfies the universal property of a tensor product. The coherence axioms for the τ is
that τM,N ◦ τN,M = idN⊗RM for all N,M and that τR,M interchanges the two isomorphisms
R ⊗R M ∼= R and M ⊗R R ∼= R. There is also a coherence axiom for the interplay of τ and
α. Furthermore, there is a coherence axiom for α involving 4 objects. Have a look at the
wikipedia page for (symmetric) monoidal categories. All of these coherence axioms follow
from the versions for the cartesian products. □

Recall that an adjunction of categories consists of functors F : C → D and G : D → C

together with a natural isomorphism

τ : HomD(F (−),−) ∼= HomC(−, G(−)) : Cop ×D→ Set.

Given a functor G : D → C, recall also that it admits a left adjoint if and only if for each
c ∈ C, the functor

HomC(c,G(−)) : D→ Set

is corepresentable, i.e. isomorphic to HomD(F (c),−) for some object F (c) ∈ D which is called
a corepresenting object. If this is the case, choices of corepresenting objects F (c) assemble
into a functor F : C→ D which is then left adjoint to G. This says that checking whether or
not a given functor admits an adjoint is a “pointwise” question. See chapter 6 in my lecture
notes “Algebra” for further details. We will freely use these notions in what follows.

6.14. Corollary Let R be a commutative ring and M an R-module. Then the functor
HomR(M,−) : Mod(R)→ Mod(R) admits a left adjoint M ⊗R − : Mod(R)→ Mod(R).
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Proof. The bilinear map M × N → M ⊗R N part of the tensor product corresponds to a
unique linear map N → HomR(M,M ⊗R N). Consider the composite

Hom(M⊗RN,L) −→ HomR(HomR(M,M⊗RN),HomR(M,L)) −→ HomR(N,HomR(M,L)).

Postcomposing the final term with the canonical bijection to HomR,R(M × N,L) from Re-
mark 6.6, the composite becomes restriction along the bilinear map M ×N →M ⊗R N and
is therefore a bijection by the universal property of the tensor product. Consequently, the
above composite is also a bijection, and natural in L by inspection. This precisely says that
sending N to M ⊗R N assembles into a left adjoint of HomR(M,−). □

6.15. Remark Given a map f : N → N ′, the resulting map id × f : M × N → M × N ′ →
M ⊗R N is R-bilinear and therefore extends uniquely to an R-linear map id⊗ f : M ⊗R N →
M ⊗R N ′. Unravelling the definitions, this map is indeed the effect of the functor M ⊗R −
on the morphism f .

6.16. Corollary Let R be a commutative ring and M an R-module. Then the functor
M ⊗R − : Mod(R) → Mod(R) preserves colimits, and the functor HomR(M,−) : Mod(R) →
Mod(R) preserves limits.

Exercise. The functor HomR(−,M) : Mod(R)op → Mod(R) also preserves limits.

6.17. Remark One says that a symmetric monoidal category is closed if for all objects M ,
the tensor product functor M ⊗− admits a right adjoint. Consequently, (Mod(R),⊗R, R) is
a closed symmetric monoidal category.

6.18. Lemma Let f : R → S be a morphism in CAlg and M an R-module. Then the R-
modules S⊗RM and HomR(S,M) are canonically the restriction of S-modules with the same
name.

Proof. We need to construct S-module structures on S⊗RM and HomR(S,M) giving rise to
the canonical R-module structures via the map f . We first, consider S ⊗R M . For this we
consider the following composite:

S × (S ⊗R M) −→ S ⊗R (S ⊗R M) ∼= (S ⊗R S)⊗R M −→ S ⊗R M

where the last map is given by the multiplication map of S (note that it is R-bilinear). On
elementary tensors, this map sends (s, s′ ⊗m) to ss′ ⊗m. One then checks that this indeed
defines an S-module structure on S⊗RM whose restricted R-module structure is the canonical
one since r · (s⊗m) = rs⊗m by definition of the tensor product. Likewise, we define a map
S×HomR(S,M)→ HomR(S,M) by sending (s, f) to the map sf defined by (sf)(s′) = f(ss′).
Again, one checks that this is well-defined and gives an S-module structure on HomR(S,M).
The restricted R-module structure is then the canonical one, since (rf)(s) = f(rs) = r · f(s)
by R-linearity of f . □

6.19. Proposition Let R→ S be a map of commutative rings. Then the restriction of scalars
functor Mod(S)→ Mod(R) admits left and right adjoint, given by S ⊗R − and HomR(S,−).
Proof. It remains to verify natural (in S-modules N and R-modules M) bijections

HomS(S ⊗R M,N) ∼= HomR(M,N) and HomR(N,M) ∼= HomS(N,HomR(S,M)).

The first bijection is induced by sending a map f : S ⊗R M → N to its restriction along

M
ι(1,−)→ S ⊗R M . An inverse is given as follows: Let g : M → N be R-linear. Then the map
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S ×M → N , (s,m) 7→ s · g(m) is R-bilinear, and therefore descends to a map S ⊗R M → N ,
which, on elementary tensors sends s ⊗m to s · g(m). This map is evidently S-linear. The
second bijection for instance is given by sending f : N → M to the map N → HomR(S,M),
n 7→ (s 7→ f(sn)). Its inverse is given by postcomposing with the evaluation at 1 map
HomR(S,M)→M (sending g to g(1)). It is a direct check to see that these maps are natural
in N and M . □

Exercise. Let M be an R-module and a an ideal of R. There is a canonical isomorphism
R/a⊗R M →M/aM of R/a-modules.

The terms appearing in the statement of the following lemma will be explained in the proof.

6.20. Lemma Let f : R → S be a map of commutative rings. Then the extension of scalars
functor Mod(R)→ Mod(S) canonically admits the structure of a symmetric monoidal functor.
In particular, given a commutative R-algebra A, the tensor product S ⊗R A is a commutative
S-algebra.

Proof. Giving the functor S ⊗R − a symmetric monoidal structure amounts to specifying
isomorphisms S ⊗R R ∼= S and ρM,N : (S ⊗R M)⊗S (S ⊗R N)→ S ⊗R (M ⊗R N) compatible
with the associativity and symmetry isomorphisms in Mod(R) and Mod(S), respectively, see
again the Wikipedia page for the exact compatibilities that are required. For the first, we use
the multiplication map S ×R→ S, (s, r) 7→ sf(r), note that it is R-bilinear and satisfies the
universal property of the tensor product. The isomorphism ρM,N is given by the composite
The isomorphism is given as follows:

(S ⊗R M)⊗S (S ⊗R N) ∼= (M ⊗R S)⊗S (S ⊗R M)

∼= M ⊗R (S ⊗S S)⊗R M
∼= M ⊗R S ⊗R M

∼= S ⊗R (M ⊗R N).

where all isomorphisms are associativity isomorphisms and symmetry isomorphisms (and the
unitality isomorphism S ⊗S S ∼= S we have also seen earlier). It then follows that (S ⊗R A)
is a commutative ring with multiplication given by

(S ⊗R A)⊗S (S ⊗R A) ∼= S ⊗R (A⊗R A)→ S ⊗R A

where the first is the isomorphism just discussed and the second is the multiplication map
of A: Note that the multiplication map A × A → A is R-bilinear since A is an R-algebra.
Moreover, the R-algebra structure map R → A induces a ring map S ∼= S ⊗R R → S ⊗R A,
making the latter an S-algebra. □

Exercise. The category of commutative R-algebras CAlgR admits pushouts. A pushout of
B ← A→ C is given by B ⊗A C.

6.21. Corollary Let R be a commutative ring and a1, . . . , an pairwise coprime ideals of R.
Let M be an R-module. Then the canonical map

M/

n⋂
i=1

aiM −→
n∏

i=1

M/aiM

is an isomorphism.



34 MARKUS LAND

Proof. Using the above exercise, this follows from the case of rings, Theorem 2.21, by applying
the functor −⊗R M , and using that this functor preserves finite products (since the are also
finite coproducts and this functor, as a left adjoint, preserves all colimits). Here, we use that
the map used in Theorem 2.21 is a map of R-modules (which is true by construction). □

6.22. Definition A chain complex (M,d) of R-modules consists of a sequence

. . .
dn+2→ Mn+1

dn+1→ Mn
dn→Mn−1 → . . .

of composable maps of R-modules such that Im(dn+1) ⊆ ker(dn) for all n ∈ Z. For every
n ∈ Z we can then define the nth homology module

Hn(M,d) = ker(dn)/Im(dn+1).

The chain complex is called acyclic if all its homology modules vanish, and acyclic at Mn if
Hn(M,d) = 0. Acyclic chain complexes are also called exact sequences. Motivated by this,
we shall call a chain complex simply a sequence (which is an exact sequence if and only if it is

exact at each step, which means that the chain complex is acyclic). A sequence M
f→ N

g→ L
hence from here on means that Im(f) ⊆ ker(g). An exact sequence of the form

0→M → N → L→ 0

is called a short exact sequence.

6.23. Example (1) 0→M → N is exact (at M) if and only if M → N is injective.
(2) M → N → 0 is exact (at N) if and only if M → N is surjective.

(3) 0→M
f→ N

g→ L→ 0 is exact, if f is injective, Im(f) = ker(g) and g is surjective.

The following is useful Yoga involving exact sequences:

6.24. Lemma (Snake Lemma) Consider the following commutative diagram of R-modules

(0 )M ′ M M ′′ 0

0 N ′ N N ′′( 0)

f ′

p

f f ′′

i

Then there is a canonical exact sequence

(0→) ker(f ′)→ ker(f)→ ker(f ′′)
δ→ coker(f ′)→ coker(f)→ coker(f ′′)(→ 0).

where δ is called the boundary map.

Proof. The boundary map is defined as follows: Pick m′′ ∈ ker(f ′′) and m ∈M with p(m) =
m′′. By exactness of the bottom row, f(m) ∈ Im(i), we have f(m) ∈ N . Define δ(m′′) =
[f(m)] ∈ coker(f ′). This construction depends only on m′′, as one checks directly. We will
then only show exactness at the spots involving δ. That any two composites involving δ are
zero is clear. There are then two further cases to consider: For exactness at ker(f ′) it remains
to show that an element of ker(δ) can be lifted to to an element of ker(f). Second, given an
element in coker(f ′) which maps to zero in coker(f), we need to show it is in the image of δ.
Both are clear once one spells everything out. □
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6.25. Lemma (5 Lemma) Consider a commutative diagram

M0 M1 M2 M3 M4

N0 N1 N2 N3 N4

f0 f1 f2 f3 f4

consisting of horizontal exact sequences. Then

(1) f0 surjective, f1, f3 injective ⇒ f2 injective, and
(2) f4 injective, f1, f3 surjective ⇒ f2 surjective.

Proof. We indicate (2) and leave (1) and the details as an exercise (which will also be discussed
in the tutoriums). Let x ∈ N2 and y be its image in N3. Pick ȳ ∈ M3 with f3(ȳ) = y. The
image of ȳ in M4 is zero since f4 is injective and the image of y in N4 is zero (by exactness of
the lower sequence). There is thus ỹ ∈ M2 whose image in M3 is ȳ. Consider x − f2(ỹ). Its
image in N3 is zero, and hence it comes from N1. Lift this element in N1 along f1 to z ∈M1.
Denote by j the map M1 →M2. Then

f2(ỹ + j(z)) = f2(ỹ) + f2(j(z)) = f2(ỹ) + x− f2(ỹ) = x

as needed. □

6.26. Lemma Let R be a commutative ring and M an R-module. Suppose that

0→ N ′ → N → N ′′ → 0

is a short exact sequence of R-modules. Then the sequences

(1) 0→ HomR(M,N ′)→ HomR(M,N)→ HomR(M,N ′′),
(2) 0→ HomR(N

′′,M)→ HomR(N,M)→ HomR(N
′,M), and

(3) M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0

are exact. We therefore say that HomR(M,−) is left exact and that M ⊗R − is right exact.

Proof. (1): The statement is equivalent to the statement that the canonical map

HomR(M, ker(N → N ′′)) −→ ker(HomR(M,N)→ HomR(M,N ′))

is an isomorphism. This follows from the fact that HomR(M,−) is a right adjoint and hence
preserves limits, recalling that a kernel is a limit (it is the equalizer of the given map with
the zero map). Same argument works for (2) by passing to opposite categories (exercise).
For (3), we now use that M ⊗R − is a left adjoint and hence preserves cokernels (these are
coequalizers of the given map with the zero map). Moreover, as in (1), the exactness of (3)
is equivalent to the statement that the canonical map

coker(M ⊗R N →M ⊗R N ′′) −→M ⊗R (coker(N → N ′′))

is an isomorphism. □

6.27. Definition Let R be a commutative ring and M an R-module. We say that M is (1)
projective, (2) injective, or (3) flat, if for all short exact sequences

0→ N ′ → N → N ′′ → 0

we have

(1) HomR(M,N)→ HomR(M,N ′′)→ 0 is exact,
(2) HomR(N,M)→ HomR(N

′,M)→ 0 is exact, or
(3) 0→M ⊗R N ′ →M ⊗R N is exact,
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respectively.

6.28. Remark Together with Lemma 6.26, we find that a module M is projective if and only
if the functor HomR(M,−) preserves exact sequences, is injective if and only if the functor
HomR(−,M) preserves exact sequences, and flat if and only if the functor M ⊗R− preserves
exact sequences.

6.29. Definition Let M be a flat R-module. We say that M is faithfully flat if a sequence
N ′ → N → N ′′ which is exact after applying M ⊗R − is in fact exact.

Exercise. Let I be a filtered category and let

0→ Ai → Bi → Ci → 0

denote the value at i of a functor from I to the category of short exact sequences in Mod(R).
Show that the sequence

0→ colim
i

Ai → colim
i

Bi → colim
i

Ci → 0

is again exact. One therefore says that filtered colimits in Mod(R) are exact.

Exercise. Let F : Mod(R) → Mod(R) be an exact functor (i.e. one sending short exact
sequences to short exact sequences). We say that F is strongly exact if a sequence N ′ →
N → N ′′ is exact provided the sequence F (N) → F (N) → F (N ′′) is exact. Show that F is
strongly exact if and only if F (N) = 0 implies that N = 0 and if and only if F is conservative
(that is if F (f) is an isomorphism, then f is an isomorphism).

We note that the functor M ⊗R −, is strongly exact if and only if M is faithfully flat.

Exercise. Show that retracts in Mod(R) are direct summands: Given R-module maps
M → N and N → M such that M → N → M is an isomorphism, there is an R-module N ′

and an isomorphism M ⊕N ′ → N . Show that a projective module is a retract and hence in
fact a direct summand of a free module.

Exercise. A finitely generated and projective R-module is finitely presented.

6.30. Example (1) Free modules are projective and flat. Free, projective and flat modules
are closed under direct sums.

(2) Flat modules are closed under filtered colimits (because filtered colimits are exact –
exercise).

(3) Retracts (i.e. directt summands) of flat, projective, or injective modules are flat,
projective, or injective, respectively. Consequently, projective modules are flat.

(4) Products of injective modules are injective.
(5) Over fields, every module is free (hence projective and flat) and injective (exercise).
(6) Rings in which free modules are injective are called self-injective, and in particular in

the context of non-commutative rings do come up in nature, e.g. the quasi-Frobenius
algebras which appear in representation theory.

(7) Free modules are typically not injective, see the next Lemma.

The next Lemma is called Baer’s criterion for injective modules.
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6.31. Lemma Let M be an R-module.Then M is injective if and only if for every ideal I ⊆ R
of R, every R-linear map I →M extends to a map R→M .

Proof. If M is injective, any R-linear map I → M extends to R since I → R is injective.
The converse is the interesting part of the statement. So let L → N be an injection of
R-modules and f : L → M an R-linear map. Consider the set S of pairs (N ′, f ′) with
L ⊆ N ′ ⊆ N and f ′

|L = f , partially ordered by inclusion: (N ′, f ′) ≤ (N ′′, f ′′) if and only

if N ′ ⊆ N ′′ and f ′′
|N ′ = f ′. Then Zorn’s lemma implies that this set contains a maximum

(for an ascending chain, consider the union), say (N̄ , f̄). We wish to show that N̄ = N .
So assume that (N ′, f ′) ∈ S with N ′ strictly included in N . Consider x ∈ N \ N ′ and let
I = {i ∈ R | ix ∈ N ′}. The canonical map R → N determined by x then restricts to an
R-linear map I → N ′ ⊆ N . The composite I → N ′ → M can then be extended to R, by
assumption, so we obtain a map φ : R → M whose restriction to I is given by i 7→ f ′(ix).
This defines the following diagram

N ′ ⊕R M

N

f ′−φ

i+x

where i : N ′ → N denotes the inclusion and x : R → N the map determined by x. Assume
(n′, r) is in the kernel of the vertical map. Then r ∈ I by definition of I and hence φ(r) =
f(rx). This shows that the kernel of the vertical map is contained in the kernel of the
horizontal map, and in particular shows that the horizontal map factors over the image of
the vertical map, giving an extension of f ′ to a strictly larger submodule of N . □

6.32. Corollary Let A be an abelian group, viewed as Z-module. Then A is injective if and
only if A is divisible, that is, the multiplication by n map on A is surjective for all n ≥ 1.

6.33. Example The abelian group underlying a Q-module is injective. Quotients of injective
abelian groups are again injective, so Q/Z is injective as abelian group.

As an extension of what we have seen earlier, we observe that for an R-module M , the
abelian group HomZ(M,Q/Z) is naturally an R-module, via rf(m) = f(rm). Let us write

M∨Q/Z for HomZ(M,Q/Z) to indicate that this is some kind of “dual” R-module.

6.34. Lemma Let M ′ f→ M
g→ M ′′ maps of R-modules with Im(f) ⊆ ker(g). Then this

sequence is exact if and only if the induced sequence

(M ′′)∨Q/Z −→M∨Q/Z −→ (M ′)∨Q/Z

is exact.

Proof. Since exactness of sequences of R-modules is determined by the underlying sequence
of abelian groups, we can reformulate the statement using the terminology of the above
exercise as follows: The statement is that the functor HomZ(−,Q/Z) is strongly exact. By
the exercise, this amounts to showing that Q/Z is injective (which we have verified above), and
that HomZ(−,Q/Z) detects the zero abelian group. To do so, we prove the contraposition and
assume that A ̸= 0. Then there is some non-trivial element which gives rise to an inclusion
C ⊆ A where C is a cyclic group. Since Q/Z is injective, we find that the resulting map
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Hom(A,Q/Z) → Hom(C,Q/Z) is surjective, so it suffices to show that the latter is non-
trivial. This follows from the fact that Q/Z contains elements of arbitrary order: The image
of the element 1/n ∈ Q under the projection to Q/Z has order n. □

The following Lemma will be used in a proof below:

6.35. Lemma Let M be a finitely presented R-module and N any R-module. Then the canon-
ical map

γM,N : M ⊗R N∨Q/Z −→ HomR(M,N)∨Q/Z, (m, f) 7→ (φ 7→ f(φ(m))

is an isomorphism.

Proof. Let us fix an R-module N . One checks that the map as indicated is well-defined and
R-linear (making use of the universal property of the tensor product). Then we observe the
map γR,N is an isomorphism (in fact, the identity, using the canonical identifications with

N∨Q/Z of source and target). Moreover, γM⊕M ′,N canonically identifies with γM,N ⊕ γM ′,N .
Consequently, γRn,N is an isomorphism for all n ≥ 1. Now let M be a finitely presented
module. Choose a finite presentation, that is, an exact sequence Rm → Rn → M → 0.
Consider then the following diagram:

Rm ⊗R N∨Q/Z Rn ⊗R N∨Q/Z M ⊗R N∨Q/Z 0

HomR(R
m, N)∨Q/Z HomR(R

n, N)∨Q/Z HomR(M,N)∨Q/Z 0

A direct check shows that this diagram commutes. Moreover, both horizontal sequences are
exact: For the top one, it follows from the right exactness of −⊗R N∨Q/Z, Lemma 6.26 (3),
and for the bottom one it follows from Lemma 6.26 (2) and Lemma 6.34. By what we have
already argued, the left and middle vertical maps are isomorphisms. Hence the right vertical
map is also an isomorphism (e.g. by the 5-Lemma). □

For an R-module M , let us write M∨ = HomR(M,R) for its R-linear dual module. The
following variant of Lemma 6.35 holds:

6.36. Lemma Let M be a finitely generated projective R-module and N any R-module. Then
the canonical map

M∨ ⊗R N −→ HomR(M,N), (f, n) 7→ (m 7→ f(m) · n)

is an isomorphism.

Proof. Exercise. Hint: Use the same strategy as in the proof of Lemma 6.35. □

6.37. Remark R-modules satisfying the concusion of Lemma 6.36 are called dualizable. In
general, there is a notion of dualizable objects in symmetric monoidal categories C as follows:
An object X ∈ C is dualizable if there exists Y ∈ C and maps 1→ X ⊗ Y (the coevaluation)
and Y ⊗X → 1 (the evaluation) such that the two composites

X −→ (X ⊗ Y )⊗X ∼= X ⊗ (Y ⊗X) −→ X

Y −→ Y ⊗ (X ⊗ Y ) ∼= (Y ⊗X)⊗ Y −→ Y
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are the identity of X and Y , respectively. If such a datum exists, it exists uniquely, and one
writes Y = DX. In case the symmetric monoidal category C is closed, DX is necessarily of
the form Hom(X,1) and an object is dualizable if and only if the canonical map

DX ⊗ Y −→ D(X ⊗ Y )

is an isomorphism for all Y . Exercise: Show that the dualizable R-modules are precisely the
finitely generated projective ones.

There is an even stronger notion than dualizability, namely invertibility: An R-module M
is called invertible if there exists N such that M ⊗R N ∼= R. Show that this implies that M
is dualizable (with dual given by N which is then also written M−1).

We come to some basic further relations between these properties (arguably chosen some-
what random).

6.38. Proposition Let M be a finitely presented R-module. Then R is projective if and only
if R is flat. In particular, flat ideals in Noetherian rings are projective.

Proof. Consider a an exact sequence N → N ′′ → 0. We wish to show that

HomR(M,N) −→ HomR(M,N ′′) −→ 0

is exact. By Lemma 6.34 and Lemma 6.36, this is the case if and only if the sequence

0 −→M ⊗R (N ′′)∨Q/Z −→M ⊗R N∨Q/Z

is exact, which is the case since M is flat. □

6.39. Remark There is another way one can derive Proposition 6.38. Namely, it is a theorem
of Lazard (which we shall not prove in this course) that any flat module is a filtered colimit
of finitely generated free modules. Recall that a filtered colimit is a colimit indexed over a
filtered category, and that a category I is called filtered if for every finite category J (that
is, J is small and the cardinality of all morphisms in J is finite), every functor J → I admits
a cone (not necessarily a colimit cone!). Equivalently, a non-empty category I is filtered if
and only if for any two objects x, x′ ∈ I there is an object y ∈ I and morphisms x → y and
x′ → y, and for any two morphisms f, g : x → y, there is a morphism h : y → z such that
hf = hg.

Exercise. Show that finitely presented modules M satisfy that the functor HomR(M,−)
commutes with filtered colimits. Prove or disprove that the same is true for finitely generated
R-modules M . Using Lazard’s theorem as above, show that a finitely presented and flat
module is projective.

In contrast to Proposition 6.38, finitely generated and flat modules need not be projective.
To explain a nice example, we introduce the following definitions and observations.

6.40. Definition A commutative ring R is called von Neumann regular if for all a ∈ R there
exists x ∈ R such that a = a2x.

6.41. Example (1) A field is a von Neumann regular ring.
(2) For a set I and a von Neumann regular ring Ri for all i ∈ I, the product ring

∏
iRi

is von Neumann regular.
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(3) If R is von Neumann regular and R → S is a surjection, then S is von Neumann
regular.

In particular, for a field K, the countable infinite product
∏

n≥0K is von Neumann regular.

6.42. Lemma Let R be a von Neumann regular ring.

(1) R is reduced.
(2) If R is a domain, then R is a field.
(3) Any prime ideal of R is maximal.

Proof. (1): Suppose a ∈ R with an = 0. Pick x such that a = a2x. Then an−1 = anx = 0,
and by induction, a = 0. (2): Let 0 ̸= a ∈ R. Pick x such that a = a2x. Since R is a domain
and a ̸= 0, we find that 1 = ax so that a is invertible. (3): Let p be a prime ideal. Then R/p
is a domain and von Neumann regular by Example 6.41 (3) and hence a field by (2). □

The following proposition will be proved after we have discussed localizations, see ??.

6.43. Proposition Let R be a von Neumann regular ring and M an R-module. Then M is
flat.

In the example which follows we will make use of the following nice exercise:

Exercise. Let R be a commutative ring and I an ideal. Show that if R/I is projective, then
so is I and there exists an idempotent element i ∈ R such that I = (i). In particular, I is
principal.

We are now ready to consider the following example of a finitely generated flat module
which is not projective.

6.44. Example Let K be a field and R =
∏

n≥0K. Then R is von Neumann regular as

discussed above. Consider the ideal I =
⊕

n≥0K ⊆
∏

n≥0K = R and consider the R-module

R/I. This is finitely generated and flat since any module over R is flat. If it were projective,
by the above exercise we would have I = (i) for an idempotent i ∈ R. The idempotent
elements in R are precisely the elements (an)n≥0 with ai ∈ K idempotent, and hence with
ai = 0, 1. For such an element to lie in I it must be that only finitely many of the ai’s are 1
and the rest are 0. But the ideal generated by such an element is strictly contained in I.

This example shows also that I is not a finitely generated ideal in R: If it were, then R/I
were finitely presented and flat and hence projective. But we have just argued that R/I is
not projective.

We now note that every R-module is a quotient of a projective R-module. One says that the
category Mod(R) has enough projectives. Dually, one may wonder whether every R-module
is a submodule of an injective one, saying that Mod(R) also has enough injectives. We prove
below that this is the case. Having enough projectives/injectives implies that one can derive
additive right/left exact functors. This is at the heart of homological algebra, and we will not
touch on this topic now (but possibly later when defining Tor and Ext groups).

6.45. Lemma Let M be an R-module. Then there exists an injective map M → Q with Q
injective.

Proof. Consider the R-module M∨Q/Z and choose a surjection F → M∨Q/Z with F a free
R-module, say on a set I. Let F → M be a surjection from a free R-module. Consider the



COMMUTATIVE ALGEBRA 41

composite

M −→ (M∨Q/Z)∨Q/Z −→ F∨Q/Z =
∏
I

HomZ(R,Q/Z)

We have seen that the functor (−)∨Q/Z takes surjections to injections, so the latter map in the
above composite is injective. The first map, given by sending m to φ 7→ φ(m) is also injective
(Exercise). Since products of injective R-modules are injective, it therefore suffices to show

that R∨Q/Z = HomZ(R,Q/Z) is an injective R-module. This follows from the adjunction
isomorphism

HomR(N,HomZ(R,Q/Z)) ∼= HomZ(N,Q/Z)
and the fact that the forgetful functor Mod(R)→ Mod(Z) is stricly exact (i.e. preserves and
detects exact sequences). □

We continue with an important technical tool, namely Nakayama’s lemma. First, we give
the following version of the theorem of Cayley–Hamilton.

6.46. Lemma Let R be a commutative ring and A ∈Mn(R) a matrix. Then the characteristic
polynomial χA = det(X · id−A) ∈ R[X] satisfies χA(A) = 0 ∈Mn(R).

Proof. First recall the following general situation. Suppose given a map of commutative rings
f : R→ S. Then it induces (by componentwise application) a map Mn(R)→Mn(S), as well
as a canonical map R[X] → S[X]. Given a matrix A ∈ Mn(R), let f(A) be its image in
Mn(S). Then the characteristic polynomials satisfy χf(A) = f(χA).

Now let U be the polynomial ring over Z on variables {Xij}1≤i,j≤n and consider the tau-
tological matrix X = (Xij)1≤i,j≤n ∈Mn(U). Let χX ∈ U [T ] be the characteristic polynomial
of X. On the one hand, the entries of A determine a ring homomorphism f : U → R, so
that f(X) = A. On the other hand, we can consider the embedding i : U → K of U into its
fraction field K. Then by the above we find that

χA(A) = χf(X)(f(X)) = f(χX(X)).

Similarly, we have
i(χX(X)) = χi(X)(i(X)) = 0

where the last equality (which is one in Mn(K)) follows from the Cayley–Hamilton theorem
for matrices over a field we learn in linear algebra. Since i : Mn(U)→Mn(K) is injective, we
deduce that χX(X) = 0 and hence that χA(A) = 0 as well. □

6.47. Proposition Let R be a commutative ring, a ⊆ R an ideal, M a finitely generated
R-module and ϕ : M → M an R-linear endomorphism. Suppose φ(M) ⊆ aM . Then there
exists a monic polynomial

P = Xn + a1X
n−1 + . . . an−1X + an ∈ R[X]

such that ai ∈ ai and 0 = P (φ) ∈ EndR(M).

Proof. Pick a generating setm1, . . . ,mn forM . For each 1 ≤ i ≤ n, write ϕ(mi) =
∑n

j=1 aijmj

with aij ∈ a. This determines matrix (aij)1≤i,j≤n = A ∈ Mn(a) ⊆ Mn(R) and one obtains a
commutative diagram

Rn M

an Rn M

p

A ϕ

⊆ p
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where the map p is determined by the generators mi and the lower horizontal map is the
composite of p with the inclusion an → Rn. The characteristic polynomial P of the matrix A
does what we want: First, the map EndR(M)→ HomR(R

n,M) obtained by precomposition
with p, is injective. Moreover, one checks that P (φ) ◦ p = p ◦ P (A). Then, we use that
P (A) = 0 by Lemma 6.46 to deduce that P (φ) = 0. Second, expanding out the definition of
the characteristic polynomial, we see that the coefficients satisfy the required property. □

6.48. Corollary Let R be a commutative ring and M a finitely generated R-module. Let a be
an ideal of R such that aM = M , then there exists a ∈ a such that am = m for all m ∈M .

Proof. Consider the identity of M . By Proposition 6.47, there exists a monic polynomial
P =

∑n
i=0 aiX

n−i with P (id) = 0. Then a = −
∑n

i=1 ai does the job. □

6.49. Lemma (Nakayama Lemma) Let R be a commutative ring and M a finitely generated
R-module. Suppose that a ⊆ JR is an ideal of R contained in the Jacobson radical and that
R/a⊗R M = 0. Then M = 0.

Proof. The condition that R/a ⊗R M = 0 simply means aM = M . Therefore, by Corol-
lary 6.48, there exists a ∈ a ⊆ JR such that (1 − a)m = 0 for all m ∈ M . However, since
a ∈ JR, we find that (1− a) is invertible so that m = 0. □

6.50. Corollary Let R be a commutative ring, a ⊆ JR an ideal and M a finitely generated
R-module. If N ⊆M is a submodule with N + aM = M , then N = M .

Proof. Consider M/N and apply Nakayama’s lemma. □

6.51. Corollary Let (R,m) be a local ring with residue field κ and M a finitely generated
module. Let m1, . . . ,mn be elements of M which give a basis of the κ-vector space M/mM .
Then {m1, . . . ,mn} is a generating set of M .

Proof. Consider the submodule N of M generated by m1, . . . ,mn and apply the previous
corollary. □

6.52. Corollary Let R be a commutative ring and M a finitely generated R-module. Then
any surjective R-linear map f : M →M is an isomorphism.

Proof. Exercise. □

6.53. Corollary Let R be a local ring and P a finitely generated projective module. Then P
is free.

Proof. Let κ be the residue field of R. Pick a generating set of P which lifts a basis of κ⊗RP .
This determines a map Rn → P which admits a section P → Rn (by projectivity of P ) and
these maps become inverse isomorphisms upon applying κ⊗R−. Therefore coker(P → Rn) is
a finitely generated R-module which vanishes upon applying κ⊗R −, and is therefore trivial
by Nakayama’s lemma. □

6.54. Remark In fact, over local rings any projective module is free (regardless of finite
generation). We will not prove this result here though.
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