Tutoriumsblatt 9 zu Mathematik III (Physik)

Aufgabe 1:

Es sei $\lambda: \mathcal{B}(\mathbb{R}) \to [0,\infty]$ das Borel-Lebesguemaß auf \mathbb{R} und $\delta_{\frac{1}{3}}: \mathcal{B}(\mathbb{R}) \to [0,\infty]$ das Diracmaß zum Punkt $\frac{1}{3}$. Sei $M_0:=[0,1]$ und für $n\geq 0$ entstehe M_{n+1} aus M_n durch Entfernen aller mittleren Drittel, also

$$M_{1} = M_{0} \setminus \left[\frac{1}{3}, \frac{2}{3}\right] = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

$$M_{2} = M_{1} \setminus \left(\left[\frac{1}{9}, \frac{2}{9}\right] \cup \left[\frac{7}{9}, \frac{8}{9}\right]\right) = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$

$$\vdots$$

Berechne $\int\limits_{\mathbb{R}}\mathbf{1}_{M_3}d\lambda$ und $\int\limits_{\mathbb{R}}\mathrm{id}_{\mathbb{R}}\mathbf{1}_{M_3}d\delta_{\frac{1}{3}}$. Was erhält man allgemein bei $n\in\mathbb{N}$ für $\int\limits_{\mathbb{R}}\mathbf{1}_{M_n}d\lambda$?

Aufgabe 2:

a) Sei (X, \mathcal{A}) ein Meßraum $f: X \to [0, \infty]$ meßbar und $x \in X$. Zeige, daß für das Dirac-Maß δ_x gilt

$$\int_X f \, \mathrm{d}\delta_x = f(x) \; .$$

b) Zeige, daß die charakteristische Funktion $\mathbf{1}_{\mathbb{Q}}$ von \mathbb{Q} bezüglich der Borel-Lebesgueschen σ -Algebra $\mathcal{B}(\mathbb{R})$ messbar ist und berechne $\int_{\mathbb{R}} \mathbf{1}_{\mathbb{Q}} d\lambda$ mit dem Borel-Lebesguemaß λ .

Aufgabe 3: Es sei (X, \mathcal{A}, μ) ein Maßraum. Zeige, daß

$$\begin{array}{ccc} \mu^*: \mathcal{P}(X) & \to & [0,\infty] \\ Q & \mapsto & \inf\{\mu(A): A \in \mathcal{A}, Q \subseteq A\} \end{array}$$

ein äußeres Maß auf X definiert.