Tutoriumssblatt 8 zu Mathematik III (Physik)

Aufgabe 1:

Es sei $X = \{0, 1, 2, 3\}$, $\mathcal{E} = \{\{0, 1\}, \{1, 2\}, \{1\}\}$, $\mathcal{F} = \{\{0, 1\}, \{1, 2\}\}$ und $\mathcal{A} = \sigma(\mathcal{E})$, $\mathcal{B} = \sigma(\mathcal{F})$ die davon erzeugten σ -Algebren.

- a) Zeige $\sigma(\mathcal{E}) = \sigma(\mathcal{F}) = \mathcal{P}(X)$.
- b) Zeige, daß durch $p(\{0,1\}) = p(\{1,2\}) = \frac{2}{3}$ und $p(\{1\}) = \frac{1}{3}$ ein eindeutiges Wahrscheinlichkeitsmaß auf $\sigma(\mathcal{E})$ definiert wird.
- c) Zeige, daß die Bedingungen $q(\{0,1\})=q(\{1,2\})=\frac{2}{3}$ nicht reichen, um ein eindeutiges Wahrscheinlichkeitsmaß auf $\sigma(\mathcal{F})$ zu definieren.

Aufgabe 2: Es sei $\mathcal{E} := \{\{1,...,2k-1\} : k \in \mathbb{N}\} \subseteq \mathcal{P}(\mathbb{N}).$

a) Zeige, daß die von \mathcal{E} erzeugte $\sigma-$ Algebra die Form

$$\sigma(\mathcal{E}) = \left\{ \bigcup_{j \in J} V_j : J \subseteq \mathbb{N} \right\}$$

mit
$$V_j := \begin{cases} \{1\} & \text{für } j = 1\\ \{2j - 2, 2j - 1\} & \text{für } j \ge 2 \end{cases}$$
 hat.

b) Es sei $\lambda > 0$. Zeige, daß durch

$$\mu(A) := e^{-\lambda} \sum_{\substack{j \in \mathbb{N} \\ A \cap V_j \neq \emptyset}} \frac{\lambda^{j-1}}{(j-1)!}$$

ein Wahrscheinlichkeitsmaß auf $\sigma(\mathcal{E})$ definiert wird.