Übungsblatt 5 zu Mathematik III für Physiker

Aufgabe 113: (10 Punkte)

- i) Zeigen Sie, dass $\sin |_{[-\pi/2,\pi/2]} : [-\pi/2,\pi/2] \to [-1,1]$ und $\cos |_{[0,\pi]} : [0,\pi] \to [-1,1]$ bijektiv sind.
- ii) Wie definieren Arkussinus bzw. Arkuskosinus als

$$\arcsin := \left(\sin|_{[-\pi/2,\pi/2]}\right)^{-1} : [-1,1] \to [-\pi/2,\pi/2]$$

bzw.

$$\arccos := (\cos|_{[0,\pi]})^{-1} : [-1,1] \to [0,\pi].$$

Zeigen Sie, dass

$$\arcsin(x) + \arccos(x) = \frac{\pi}{2}$$

für alle $x \in [-1, 1]$.

Aufgabe 114: (20 Punkte)

i) Betrachten Sie die Riemannsche Zahlenkugel $\widehat{\mathbb{C}}:=\mathbb{C}\cup\{\infty\}$ mit der Topologie $\mathcal{O}_{\widehat{\mathbb{C}}},$ die

$$\mathcal{B}_{\mathcal{O}_{\widehat{\mathbb{C}}}} := \{D(z,r) : z \in \mathbb{C}, r > 0\} \cup \{\widehat{\mathbb{C}} \setminus \overline{D(z,r)} : z \in \mathbb{C}, r > 0\}$$

als Basis hat, wobei $D(z,r) := \{ w \in \mathbb{C} : |w-z| < r \}$. Zeigen Sie:

- a) ∞ ist ein Berührungspunkt von \mathbb{C} ,
- b) $(\widehat{\mathbb{C}}, \mathcal{O}_{\widehat{\mathbb{C}}})$ ist kompakt,
- c) $\sin : \mathbb{C} \to \mathbb{C}$ hat keinen Grenzewert für $z \to \infty$.
- ii) Betrachten Sie die Einheitssphäre $S^2:=\{x\in\mathbb{R}^3:\|x\|=1\}$ mit der Relativtopologie $\mathcal{O}_{S^2}:=\{U\cap S^2:U\in\mathcal{O}^{\mathrm{std}}_{\mathbb{R}^3}\}$. Wir definieren die stereographische Projektion als

$$P_N: S^2 \longrightarrow \widehat{\mathbb{C}}$$

$$(x_1, x_2, x_3) \longmapsto \begin{cases} \frac{x_1}{1 - x_3} + i \frac{x_2}{1 - x_3} &, \text{ für } x \in S^2 \setminus \{N\} \\ \infty &, \text{ für } x = N \end{cases},$$

wobei N := (0,0,1). Zeigen Sie, dass P_N ein Homöomorphismus ist.

Hinweis: Zeigen Sie, dass P_N Kreise in der Einheitssphäre, die den Punkt N nicht enthalten, auf Kreise in \mathbb{C} abbildet.

Lösungen in Zweier- / Dreiergruppen anfertigen und je Gruppe eine Lösung über Moodle abgeben. Abgabe bis Mittwoch 22.11.23, 08:25 Uhr – vor der Übung.