Übungsblatt 2 zu Analysis und Lineare Algebra I

Aufgabe 5: (10 Punkte) Es seien $f: W \to X$, $g: X \to Y$ und $h: Y \to Z$ Funktionen. Zeige: Sind $g \circ f$ und $h \circ g$ bijektiv, so sind f, g und h bijektiv.

Aufgabe 6: (10 Punkte) Es seien X und Y Mengen und $f: X \to Y$ eine Funktion. Zeige die Äquivalenz von

- a) f ist injektiv.
- b) Für alle Mengen W und für alle Funktionen $g:W\to X$ und $h:W\to X$ gilt: Aus $f\circ g=f\circ h$ folgt g=h.

Aufgabe 7: (10 Punkte) Es sei (X, \leq) eine total geordnete Menge und $n \in \mathbb{N}$. Zeige: Für $(x_1, ..., x_n), (y_1, ..., y_n) \in X^n$ wird durch

$$(x_1, ..., x_n) \le (y_1, ..., y_n)$$
 : $(x_1, ..., x_n) = (y_1, ..., y_n)$ oder $x_1 < y_1$ oder wenn es $r \in \{2, ..., n\}$ mit $x_1 = y_1, ..., x_{r-1} = y_{r-1}$ und $x_r < y_r$ gibt

eine totale Ordnung auf X^n definiert.

Aufgabe 8: (10 Punkte) Zeige: $f: \mathbb{R} \to]-1,1[$ definiert eine bijektive Funktion. $x \mapsto \frac{x}{1+|x|}$

Lösungen in Zweier- / Dreiergruppen anfertigen und je Gruppe eine Lösung abgeben. Abgabe bis Donnerstag 4.11.2018, 10 Uhr – vor der Vorlesung oder im Übungskasten vor der Bibiliothek, Theresienstraße 1. Stock oder über Uni2work