

MATHEMATISCHES INSTITUT

Dr. Heribert Zenk und Dr. Alexander Kalinin

Wintersemester 2020/21

Mathematik III für Physiker 3. Tutoriumsblatt

Aufgabe 1: Erzeugte Mengenringe

Es seien X eine nicht-leere Menge, \mathcal{E} ein nicht-leeres Mengensystem in $\mathcal{P}(X)$ und

$$\mathcal{F} := \left\{ \bigcup_{i=1}^{n} E_i \,\middle|\, n \in \mathbb{N}, \, E_1, \dots, E_n \in \mathcal{E} \right\}. \tag{1}$$

Man weise die folgenden drei Aussagen nach:

- (a) \mathcal{F} ist \cup -stabil und jeder Mengenring \mathcal{G} , der \mathcal{E} enthält, erfüllt auch $\mathcal{F} \subset \mathcal{G}$. Ist zudem \mathcal{E} \cap -stabil, so besitzt auch \mathcal{F} diese Eigenschaft.
- (b) \mathcal{E} sei \cap -stabil, $\emptyset \in \mathcal{E}$ und es gelte $E \setminus D \in \mathcal{F}$ für alle $D, E \in \mathcal{E}$ mit $D \subset E$. Dann ist \mathcal{F} ein Mengenring.
- (c) Ist $\mathcal{E} \cap$ -stabil und $E \setminus D$ die endliche Vereinigung von disjunkten Mengen in \mathcal{E} für alle $D, E \in \mathcal{E}$ mit $D \subset E$, so gibt es zu jedem $A \in \mathcal{F}$ ein $n \in \mathbb{N}$ und paarweise disjunkte Mengen E_1, \ldots, E_n in \mathcal{E} mit $A = \bigcup_{i=1}^n E_i$.

Aufgabe 2: Existenz und Eindeutigkeit von Inhalten auf erzeugten Mengenringen Es seien X eine nicht-leere Menge, \mathcal{E} ein \cap -stabiles Mengensystem in $\mathcal{P}(X)$ mit $\emptyset \in \mathcal{E}$ und $\mathcal{F} \subset \mathcal{P}(X)$ definiert durch (1). Es gelte $E \setminus D \in \mathcal{F}$ für alle $D, E \in \mathcal{E}$ mit $D \subset E$.

(a) Man beweise, dass ein Inhalt μ auf \mathcal{F} eindeutig durch seine Werte auf \mathcal{E} bestimmt ist. Das bedeutet, ist ν ein weiterer Inhalt auf \mathcal{F} , der

$$\mu(E) = \nu(E)$$
 für alle $E \in \mathcal{E}$

erfüllt, so folgt stets $\mu = \nu$.

(b) Es sei μ_0 eine $[0, \infty]$ -wertige Funktion auf \mathcal{E} mit $\mu_0(\emptyset) = 0$, die additiv im folgenden Sinne ist: Für $n \in \mathbb{N}$ und paarweise disjunkte Mengen E_1, \ldots, E_n in \mathcal{E} mit $\bigcup_{i=1}^n E_i \in \mathcal{E}$ gilt

$$\mu_0 \left(\bigcup_{i=1}^n E_i \right) = \sum_{i=1}^n \mu_0(E_i).$$

Unter der Annahme, dass jedes $A \in \mathcal{F}$ als endliche Vereinigung paarweiser disjunkter Mengen in \mathcal{E} geschrieben werden kann, zeige man, dass es genau einen Inhalt μ auf \mathcal{F} gibt, der $\mu = \mu_0$ auf \mathcal{E} leistet. In diesem Fall ist μ endlich, falls μ_0 es ist.

Aufgabe 3: Das Lebesguesche Prämaß

Zu dem Mengensystem aller links halboffenen und beschränkten Interalle betrachten wir den dazugehörigen Mengenring:

$$\mathcal{F}_1 := \left\{ \bigcup_{i=1}^n [a_i, b_i] \,\middle|\, n \in \mathbb{N}, a, b \in \mathbb{R}^n \colon a_i \le b_i \,\forall i \in \{1, \dots, n\} \right\}.$$

- (a) \mathcal{F}_1 ist ein Mengenring über \mathbb{R} und zu jedem $A \in \mathcal{F}_1$ gibt es ein $n \in \mathbb{N}$ und $a, b \in \mathbb{R}^n$ mit $a_i \leq b_i$ für alle $i \in \{1, \ldots, n\}$ und $A = \bigcup_{i=1}^n]a_i, b_i]$, so dass im Falle $n \geq 2$ stets $b_i \leq a_{i+1}$ für alle $i \in \{1, \ldots, n-1\}$ gilt.
- (b) Man zeige, dass es genau einen Inhalt λ_1 auf \mathcal{F}_1 gibt, der $\lambda_1(]a,b]) = b-a$ für alle $a,b \in \mathbb{R}$ mit $a \leq b$ erfüllt. Zudem folgere man, dass λ_1 endlich sein muss.