

MATHEMATISCHES INSTITUT

Dr. Heribert Zenk und Dr. Alexander Kalinin

Wintersemester 2020/21

Mathematik III für Physiker 6. Übungsblatt

Aufgabe 16: Der geometrische Mittelpunkt

(10 Punkte)

Es seien $n \in \mathbb{N}$ und λ_n das Lebgesgue-Maß auf \mathbb{R}^n . Für $B \in \mathcal{B}(\mathbb{R}^n)$ mit $\lambda_n(B) \in]0, \infty[$ und $\int_B |x| dx < \infty$ wird der Vektor

$$c(B) := \frac{1}{\lambda_n(B)} \int_B x \, dx$$

in \mathbb{R}^n der geometrische Mittelpunkt von B genannt.

- a) Man weise nach, dass $\lambda_n(B)$ und $\int_B |x| dx$ notwendigerweise endlich sind, falls es eine λ_n -Nullmenge $N \in \mathcal{B}(\mathbb{R}^n)$ gibt, so dass $B \cap N^c$ beschränkt ist.
- b) Für eine Folge $(B_k)_{k\in\mathbb{N}}$ von paarweise disjunkten Borelmengen in B, die $\bigcup_{k\in\mathbb{N}} B_k = B$ und $\lambda_n(B_k) > 0$ für alle $k \in \mathbb{N}$ leisten, stelle man c(B) mithilfe der Folge $(c(B_k))_{k\in\mathbb{N}}$ dar.
- c) Für $i \in \{1, ..., n\}$ wird B symmetrisch bezüglich des Unterraums $\{x \in \mathbb{R}^n \mid x_i = 0\}$ genannt, wenn für die Abbildung $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ koordinatenweise definiert durch

$$\varphi_i(x) := x_i$$
 für $i \neq j$ und $\varphi_i(x) := -x_i$ für $i = j$

die Gleichung $\varphi(B) = B$ gilt. Man zeige in diesem Fall: $c_i(B) = 0$.

Aufgabe 17: Konstruktion endlich-dimensionaler Kegel

(10 Punkte)

Für $n \in \mathbb{N}$, eine nicht-leere Borelmenge B in \mathbb{R}^n und einem Punkt $p \in \mathbb{R}^{n+1}$ mit $p_{n+1} \neq 0$ wird die Menge

$$C := \{(1-t)(x_1, \dots, x_n, 0) + tp \mid x \in B, t \in [0, 1]\}$$

in \mathbb{R}^{n+1} als Kegel mit der Grundfläche B und der Spitze p bezeichnet. Man gebe $\lambda_{n+1}(C)$ mithilfe von $\lambda_n(B)$ und p_{n+1} an, indem man den Transformationssatz anwende.

Aufgabe 18: Das Volumens eines Teilstücks einer Kugel

(15 Punkte)

Für R > 0 und $\rho \in [0, R]$ soll in dieser Aufgabe das Volumen des Teilstücks

$$B^{\rho}(R) := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le R^2, \ x^2 + y^2 \ge \rho^2 \}$$

einer Kugel um den Nullpunkt mit Radius R berechnet werden. Dazu haben wir zwei Methoden kennengelernt.

- a) Man leite $\lambda_3(B^{\rho}(R))$ mit dem Cavalierischen Prinzip und der bekannten Formel für den Flächeninhalt eines Kreises her.
- b) Nun bestimme man das Volumen mittels sphärischer Koordinaten.