Blatt 10 zu Mathematik III für Physiker

Aufgabe 28: (15 Punkte)

a) Es seien $y_1, ..., y_n \in]0, \infty[$ und $t_1, ..., t_n \in [0, \infty[$ mit $t_1 + ... + t_n = 1$. Zeige:

$$\prod_{k=1}^{n} y_k^{t_k} \le \sum_{k=1}^{n} t_k y_k.$$

Es sei (X, \mathcal{A}, μ) ein Maßraum und $f: X \to [0, \infty[$ sei $\mathcal{A}-$ meßbar. Zeige:

- b) $I := \{ p \in [1, \infty[: f \in L^p(X)] \}$ ist ein Intervall.
- c) $\varphi: I \to [0, \infty[$ ist stetig. $p \mapsto \|f\|_{L^p}$

Aufgabe 29: (10 Punkte)

Es sei (X, \mathcal{A}, μ) ein σ -endlicher Maßraum und (Y, \mathcal{B}, ν) ein endlicher Maßraum. $k: X \times Y \to \mathbb{C}$ sei $\mathcal{A} \otimes \mathcal{B}$ -meßbar mit sup $\{|k(x,y)| : x \in X, y \in Y\} < \infty$. Zeige daß durch

$$(Kf)(y) := \int_X k(x, y) f(x) d\mu(x)$$

eine beschränkte lineare Abbildung $K:L^1(X) \to L^2(Y)$ definiert wird und schätze die $f \mapsto Kf$

Operatornorm nach oben ab.

Aufgabe 30: (10 Punkte)

Für $t \in \mathbb{R}$ seien $f_t:]-1,1[\rightarrow [-1,1]$ und $g_t:]-1,1[\rightarrow \mathbb{R}$. Zeige, daß für $x \mapsto \sin(tx)$ $x \mapsto x\cos(tx)$

 $p \in [1, \infty[$ die Abbildung $\Phi_p : \mathbb{R} \to L^p(]-1, 1[)$ differenzierbar ist mit $\Phi'(t) = g_t$. $t \mapsto f_t$