

MATHEMATISCHES INSTITUT

Dr. Heribert Zenk und Dr. Alexander Kalinin

Wintersemester 2020/21

Analysis mehrerer Variablen 11. Übungsblatt

Aufgabe 31: Beispiel zur Existenz unendlich vieler Lösungen

(20 Punkte)

Für $\alpha \in]0,1[$ und $t_0,x_0 \in \mathbb{R}$ sollen in dieser Aufgabe unendlich viele auf \mathbb{R} definierte Lösungen zu der Differentialgleichung

$$x' = |x|^{\alpha} \tag{1}$$

mit Anfangswertbedingung $x(t_0) = x_0$ konstruiert werden. Dazu gehen wir schrittweise vor:

(a) Man gebe eine streng monoton wachsende und stetige Funktion $\rho_{\alpha}: \mathbb{R} \to \mathbb{R}$ an, die

$$\int_{x_0}^x \frac{1}{|\xi|^{\alpha}} d\xi = \rho_{\alpha}(x) - \rho_{\alpha}(x_0) \quad \text{für alle } x \in \mathbb{R} \text{ leistet.}$$

- (b) Man leite $t_1 \in \mathbb{R}$ und zwei Funktionen $\lambda_1 :]-\infty, t_1] \to]-\infty, 0]$, $\lambda_2 : [t_1, \infty[\to [0, \infty[$ her, so dass $\rho_{\alpha}(x) \rho_{\alpha}(x_0) = t t_0$ genau dann für $(t, x) \in \mathbb{R} \times \mathbb{R}$ gilt, wenn der Fall $t \leq t_1$ und $x = \lambda_1(t)$ oder der Fall $t \geq t_1$ und $x = \lambda_2(t)$ eintritt.
- (c) Sind die Einschränkungen von λ_1 und λ_2 auf $]-\infty,t_1[$ bzw. $]t_1,\infty[$ Lösungen von (1), für die die Grenzwerte $\lim_{t\uparrow t_1} \lambda_1'(t)$ und $\lim_{t\downarrow t_1} \lambda_2'(t)$ existieren?
- (d) Nun weise man nach, dass für jede Lösung λ von (1) auf einem offenen Intervall I in \mathbb{R} und alle $c \in \mathbb{R}$ die Funktion $\lambda_c : I c \to \mathbb{R}$, $s \mapsto \lambda(s + c)$ auch eine Lösung von (1) ist.
- (e) Mit (c) und (d) konstruiere man eine Schar von Lösungen zu dem Anfangswertproblem, welche im Fall $x_0 \neq 0$ von einem Scharparameter $a \geq 0$ und im Fall $x_0 = 0$ von zwei Scharparametern $a, b \geq 0$ abhängt.

Aufgabe 32: Beispiel zur Darstellung einer Picard-Iteration

(15 Punkte)

Zu der autonomen Differentialgleichung $x' = x^2$ mit Anfangswertbedingung x(0) = 1 betrachten wir die dazugehörige Picard-Folge $(x_n)_{n \in \mathbb{N}_0}$ in $C^1(\mathbb{R})$ definiert durch $x_0 := 1$ und

$$x_{n+1}(t) := 1 + \int_0^t x_n^2(s) ds$$
 für alle $n \in \mathbb{N}_0$.

- (a) Man berechne die ersten drei Iterierten x_1, x_2, x_3 explizit.
- (b) Für $n \in \mathbb{N}$ weise man nach: Gibt es eine Polynomfunktion r_n , so dass die n-te Iterierte x_n die Gestalt

$$x_n(t) = \sum_{k=0}^n t^k + t^{n+1} r_n(t) \quad \text{für alle } t \in \mathbb{R}$$
 (2)

annimmt, dann existiert eine weitere Polynomfunktion r_{n+1} , so dass auch x_{n+1} von dieser Form ist. Genauer, (2) gilt, wenn n durch n+1 ersetzt wird.

(c) Schließlich beweise man die Darstellung (2) für eine Polynomfunktion r_n durch vollständige Induktion über $n \in \mathbb{N}$.