Analysis einer Variablen (LAG): Tutoriumsblatt 9

Aufgabe T9.1 Gegeben sei $(a_k)_{n\in\mathbb{N}}$, wobei

$$a_k = \frac{k+1}{2^k}.$$

(a) Zeige dass für alle $n \in \mathbb{N}$

$$\sum_{k=0}^{n} a_k = 4 - \frac{n+3}{2^n}.$$

(b) Untersuche für $m \in \mathbb{N}$ die Reihe $\sum_{k=m}^{\infty} a_k$ auf Konvergenz und gibt gegebenenfalls den Wert der Reihe an.

Aufgabe T9.2 Bestimme in $\widehat{\mathbb{R}}$ die Grenzwerte der Folgen $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$, wobei

$$a_n := n!,$$
 $b_n := \frac{n^3 + n + 2}{n^2 + 1},$ $c_n := \sqrt{n^2 + 1}.$

Aufgabe T9.3 Gegeben sei die Folge $(x_n)_{n\in\mathbb{N}}$ mit

$$x_n := \frac{1}{(-1)^n + \sqrt[n]{\frac{1}{n}}}.$$

Bestimme $\limsup_{n\to\infty} x_n$ und $\liminf_{n\to\infty} x_n$ in $\widehat{\mathbb{R}}$.

Aufgabe T9.4 Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine Folge mit $x_n>0$ für alle $n\in\mathbb{N}$. Zeige: Gilt $\lim_{n\to\infty}x_n=0$, so konvergiert die Folge $(\frac{1}{x_n})_{n\in\mathbb{N}}$ in \mathbb{R} gegen $+\infty$.