LMU München Mathematisches Institut WiSe 2019/20

PD Dr. Heribert Zenk M. Feistl, K. Matzke

Analysis einer Variablen (LAG): Tutoriumsblatt 9

Aufgabe T9.1 Berechne den Wert der Reihe

$$\sum_{m=2}^{\infty} \frac{1}{(m-1)(m+1)}.$$

Hinweis: Verwende eine Partialbruchzerlegung, d.h. bestimme $A, B \in \mathbb{R}$, sodass $\frac{1}{(m-1)(m+1)} =$ $\frac{A}{m-1} + \frac{B}{m+1}.$

Aufgabe T9.2 Untersuche folgende Reihen auf Konvergenz:

(a)
$$\sum_{k=1}^{\infty} \frac{k^2}{\sqrt[4]{k+1}^k}$$
, (b) $\sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k}}$, (c) $\sum_{k=1}^{\infty} \binom{2k}{k} 6^{-k}$.

(b)
$$\sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k}}$$
,

(c)
$$\sum_{k=1}^{\infty} {2k \choose k} 6^{-k}$$

Aufgabe T9.3 Zeige: Sind alle $a_n > 0$, so konvergiert die Reihe

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + n^2 a_n}.$$