Tutoriumsblatt 8 zu Mathematik III für Physiker

Aufgabe 1:

Bestimme die σ -Algebra $\sigma(\{\{x\}:x\in\mathbb{R}\})$ auf \mathbb{R} , die von allen einelementigen Teilmengen erzeugt wird.

Aufgabe 2:

Es sei (X, \mathcal{A}, μ) ein Maßraum, $n \in \mathbb{N}$ und $A_1, ..., A_n \in \mathcal{A}$ mit $\mu(A_1) < \infty, ..., \mu(A_n) < \infty$. Zeige:

$$\mu\left(\bigcup_{j=1}^{n} A_{j}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq j_{1} < \dots < j_{k} \leq n} \mu\left(\bigcap_{l=1}^{k} A_{j_{l}}\right) .$$

Aufgabe 3:

Es sei $\emptyset \neq X$ eine endliche Menge. Zeige:

a) Für das Zählmaß $\nu:\mathcal{P}(X)\to [0,\infty[$ und die Diracmaße δ_x gilt:

$$\nu = \sum_{x \in X} \delta_x$$

b) Jedes Maß $\mu: \mathcal{P}(X) \to [0, \infty]$ hat die Form

$$\mu = \sum_{x \in X} \mu(\{x\}) \delta_x.$$