Übungsblatt 7 zu Mathematik III für Physiker

Aufgabe 130: (10 Punkte)

Es sei \mathcal{H} ein \mathbb{K} -Hilbertraum mit $\dim_{\mathbb{K}}(\mathcal{H}) = n < \infty$. Zeige, daß

$$\begin{array}{cccc} T: \mathcal{H} & \to & L(\mathcal{H}, \mathbb{K}) \\ \phi & \mapsto & \left(\begin{array}{ccc} \langle \phi | : \mathcal{H} & \to & \mathbb{K} \\ \varphi & \mapsto & \langle \phi, \varphi \rangle \end{array} \right) \end{array}$$

eine bijektive, konjugiert lineare, isometrische Abbildung definiert.

Aufgabe 131: (10 Punkte)

Es sei $\emptyset \neq X$ eine Menge. $\mathcal{D} \subseteq \mathcal{P}(X)$ heißt ein **Dynkin-System**, wenn

- $X \in \mathcal{D}$
- Zu $A \in \mathcal{D}$ ist auch $X \setminus A \in \mathcal{D}$.
- Für jede Folge $(A_n)_{n\in\mathbb{N}}$ von paarweise disjunkten Mengen in \mathcal{D} ist $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{D}$.

Es sei nun $\mathcal{D} \subseteq \mathcal{P}(X)$ ein Dynkin-System. Zeige die Äquivalenz von:

- a) \mathcal{D} ist eine σ -Algebra.
- b) \mathcal{D} ist durchschnittstabil, dh. mit $A, B \in \mathcal{D}$ ist $A \cap B \in \mathcal{D}$.

Aufgabe 132: (10 Punkte)

a) Zeige: Der Durchschnitt einer beliebigen Familie \mathcal{D}_j , $j \in J$ von Dynkin-Systemen auf einer Menge X ist wieder ein Dynkin-System, daher ist auch zu jedem $\mathcal{E} \subseteq \mathcal{P}(X)$

$$\delta(\mathcal{E}) := \bigcap_{\substack{\mathcal{E} \subseteq \mathcal{D} \\ \mathcal{D} \text{ Dynkin-System}}} \mathcal{D}$$

das kleinste Dynkin-System auf X, das \mathcal{E} enthält.

b) Es sei $\emptyset \neq X$ und $\mathcal{E} \subseteq \mathcal{P}(X)$ sei durchschnittstabil, zeige:

$$\delta(\mathcal{E}) = \sigma(\mathcal{E}).$$

Hinweis: Es könnte helfen für $B \in \delta(\mathcal{E})$ das Mengensystem

$$\mathcal{D}_B := \{ Q \subseteq X : Q \cap B \in \delta(\mathcal{E}) \}$$

zu betrachten.

Aufgabe 133: (10 Punkte)

Es sei $\mathcal{E} = \{\{1, 2, ..., k^2\} : k \in \mathbb{N}\} \subseteq \mathcal{P}(\mathbb{N})$. Bestimme die von \mathcal{E} erzeugte σ -Algebra $\sigma(\mathcal{E}) \subseteq \mathcal{P}(\mathbb{N})$.

Abgabe je Zweier-/Dreiergruppe eine Lösung bis Donnerstag 6.12.2018, 14 Uhr – vor der Vorlesung oder im Übungskasten vor der Bibiliothek, Theresienstraße 1. Stock